Cho hàm số y = f(x) thoả mãn điều kiện f(1) = 12, f’(x) liên tục trên ℝ và ∫ 1 4 f ' x d x = 17 . Khi đó f(4) bằng
A. 5
B. 29
C. 19
D. 9
Cho A ( 1; 4; 2); B ( -1; 2;4) và d : x - 1 - 1 = y + 2 1 = z 2 . Điểm M di động trên (d), khi đó GTNN của F = M A 2 + M B 2 bằng bao nhiêu?
![]()
![]()
![]()
![]()
Cho hàm số y = f ( x ) = ax 3 + bx 2 + cx + d có bảng biến thiên như sau

Khi đó f x = m có bốn nghiệm phân biệt x 1 < x 2 < x 3 < 1 / 2 < x 4 khi và chỉ khi
A.
.
B.
.
C.
.
D.
.
Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị hàm số y = f'(x) như hình vẽ. Bất phương trình f ( x ) ≤ 3 x - 2 x + m có nghiệm trên ( - ∞ ; 1 ] khi và chỉ khi
![]()
![]()
![]()
![]()
Cho hàm số y= f(x )= ax3+ bx2+ cx+ d có bảng biến thiên như sau:

Khi đó |f(x)| = m có 4 nghiệm phân biệt x 1 < x 2 < x 3 < 1 2 < x 4 khi và chỉ khi
A. ½< m< 1
B. 0< m
C. m> 1
D. m< 1/2
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho y = f ( x ) có đạo hàm f ' ( x ) = ( x - 2 ) ( x - 3 ) 2 . Khi đó số cực trị của hàm số y = f ( 2 x + 1 ) là
A. 0
B. 2
C. 1
D. 3
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Cho hàm số y= f(x) Hàm số y= f’(x) có bảng biến thiên như sau

Bất phương trình f ( x ) < 3 e x + 2 + m có nghiệm x ∈ ( - 2 ; 2 ) khi và chỉ khi
A.![]()
B. ![]()
C. ![]()
D.
Cho (S): x - 1 2 + y + 2 2 + z - 3 2 = 4 và A(2; -1; 2); B(1; 0; 4). Khi đó:
A. (S) và đường thẳng AB tiếp xúc.
B. Đường thẳng AB đi qua tâm (S).
C. Đường thẳng AB không cắt (S).
D. Đoạn AB và (S) có đúng 1 điểm chung