Cho đưởng tròn tâm O, từ điểm A nằm ngoài đương tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm).I là điểm thuộc cung nhỏ BC (I khác B, C), từ I kẻ ID,IE,IF lần lượt vuông góc với AB,BC,AC (D,E,F lần lượt nằm trên AB,BC,AC); IB cắt DE tại M; IC cắt EF tại N.
a) C/m tứ giác BEID và CEIF nội tiếp
b) C/m tam giác IDE đòng dạng với tam giác IEF
c) C/m IE vuông góc với MN
a: góc BEI+góc BDI=180 độ
=>BEID nội tiếp
góc CEI+góc CFI=180 độ
=>CEIF nội tiếp
b: góc IED=góc IBD=1/2*sđ cung BI
góc IFE=góc ICE=1/2*sđ cung BI
=>góc IED=góc IFE
góc IDE=góc IBE=1/2*sđ cung IC
góc IEF=góc ICF=1/2*sđ cung IC
=>góc IDE=góc IEF
=>ΔIDE đồng dạng với ΔIEF