Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ank Dương

cho đường tròn tâm O,từ điểm A ở bên ngoài(O) kẻ các tiếp tuyến AB,AC(B,C là các tiếp điểm)M thuộc cung nhỏ BC. kẻ MI,MH,MK lần lượt vuông góc BC,CA,AD.MB cắt IK tại E,MC cắt IH tại F

a)4 điểm B,I,M,K nằm trên một đừng tròn

b)MI2=MH.MK

c)EF vuông góc MI

a: Sửa đề: MK\(\perp\)AB

Xét tứ giác BIMK có \(\widehat{BIM}+\widehat{BKM}=90^0+90^0=180^0\)

nên BIMK là tứ giác nội tiếp

=>B,I,M,K cùng thuộc một đường tròn

b: Xét tứ giác IMHC có \(\widehat{MIC}+\widehat{MHC}=90^0+90^0=180^0\)

nên IMHC là tứ giác nội tiếp

=>\(\widehat{MHI}=\widehat{MCI}\)(1)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MIK}=\widehat{MBK}\left(2\right)\)

Xét (O) có

\(\widehat{MCB}\) là góc nội tiếp chắn cung MB

\(\widehat{MBK}\) là góc tạo bởi tiếp tuyến BK và dây cung BM

Do đó: \(\widehat{MCB}=\widehat{MBK}=\widehat{MCI}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{MIK}=\widehat{MHI}\)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MKI}=\widehat{MBI}=\widehat{MBC}\left(4\right)\)

Ta có: IMHC là tứ giác nội tiếp

=>\(\widehat{MIH}=\widehat{MCH}\left(5\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MCH}\) là góc tạo bởi tiếp tuyến CH và dây cung CM

Do đó: \(\widehat{MBC}=\widehat{MCH}\left(6\right)\)

Từ (4),(5),(6) suy ra \(\widehat{MIH}=\widehat{MKI}\)

Xét ΔMIH và ΔMKI có

\(\widehat{MIH}=\widehat{MKI}\)

\(\widehat{MHI}=\widehat{MIK}\)

Do đó: ΔMIH~ΔMKI

=>\(\dfrac{MI}{MK}=\dfrac{MH}{MI}\)

=>\(MI^2=MH\cdot MK\)


Các câu hỏi tương tự
Trang Hoang Nhat
Xem chi tiết
An Lê Khánh
Xem chi tiết
Won Yi
Xem chi tiết
nguyen nho khiem
Xem chi tiết
Lê Bảo Hân
Xem chi tiết
Phuong Linh
Xem chi tiết
Nguyễn Hằng
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Sóng Bùi
Xem chi tiết