Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Bé Bạch Dương

Cho đường tròn tâm O đường kính AB. Từ 1 điểm M nằm trên nửa đường tròn vẽ tiếp tuyến xy. Vẽ AD và BC cùng vuông góc với xy.

C/m MC=MDC/m AD+BC có giá trị không đổi khi M di chuyển trên nửa đường tròn.C/m AD là tiếp tuyến của đường tròn đường kính CD.Xác định vị trí của M trên nửa đường tròn để diện tích tứ giác ABCD lớn nhất.
Hoàng Lê Bảo Ngọc
16 tháng 8 2016 lúc 21:03

A B D C M

1. Ta có  AD // OM // BC ; OA = OB

=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD

2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi. 

3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD

Lại có AD vuông góc với MD => đpcm

4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)

Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB

Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2


Các câu hỏi tương tự
Xuân Trà
Xem chi tiết
Xuân Trà
Xem chi tiết
Trường Sơn
Xem chi tiết
Toàn Trần
Xem chi tiết
Song Minguk
Xem chi tiết
Xuân Trà
Xem chi tiết
Phạm Ngọc
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Nguyen NgocAnh
Xem chi tiết