b: Kẻ OH vuông góc AB, OK vuông góc CD
=>OH=OK
Xét ΔSHO vuông tại H và ΔSKO vuông tại K có
SO chung
OH=OK
=>ΔSHO=ΔSKO
=>SH=SK
=>SA=SC
b: Kẻ OH vuông góc AB, OK vuông góc CD
=>OH=OK
Xét ΔSHO vuông tại H và ΔSKO vuông tại K có
SO chung
OH=OK
=>ΔSHO=ΔSKO
=>SH=SK
=>SA=SC
b1: cho đường tròn tâm O, 2 dây AB, CD bằng nhau. Các đường thẳng AB, CD cắt nhau tại S. Ở bên ngoài đường tròn sao cho A nằm giữa S và B, C nằm giữa S và D. CM:
a, SC là tia phân giác của góc ÁC
b, SA=SC
b2: cho 1 đường tròn tâm O và điểm M nằm ngoài đường tròn tâm O. Tia MO cắt đường tròn tâm O tại A và B (A nằm giữa M và O). CMR:
a, MA là khoảng cách nhỏ nhất từ M tới các điểm của đường tròn tâm O
b, MB là khoảng cách lớn nhất từ M tới các điểm của đường tròn tâm O
Bài 8. Từ một điểm S ở ngoài đường tròn (O) kẻ hai đường thẳng cắt đường tròn (O) lần lượt tại A, B, C,
D (A nằm giữa S và B, C nằm giữa S và D). Chứng minh rằng nếu AB = CD thì SA = SC.
Từ một điểm S ở ngoài đường tròn (O) kẻ hai đường thẳng cắt đường tròn (O) lần lượt tại A, B, C,
D (A nằm giữa S và B, C nằm giữa S và D). Chứng minh rằng nếu AB = CD thì SA = SC.
Giúp mình với :(
Qua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyến SA và cát tuyến SBC của đường tròn (SB, SC). Tia phân giác của góc BAC cắt dây BC tại D và cắt (O) tại E. a) Chứng minh SA = SD. b) SD2 = SB . SC.
Cho đường tròn tâm O và điểm S nằm ngoài đường tròn .Từ S kẻ 2 tiếp tuyến SA,SB tới đường tròn. Gọi M là trung điểm của SA. Tia BM cắt đường tròn tâm O tại N. Kẻ dây AC sao cho AO là tia phân giác góc BAC. Chứng minh s,N, C thẳng hàng
cho đường tròn (O) hai dây AB,CD bằng nhau và cắt nhau tại điểm I nằm bên trong đường tròn .CMR :
a/ IO là tia phân giác của 1 trong hai góc tạo bởi 2 dây AB và CD
B/ Điểm I chia AB , CD thành các đoạn thẳng bằng nhau đôi một
Cho đường tròn tâm O, các dây AB và CD cắt nhau tại M nằm ngoài đường tròn , trong đó AB > CD , CM:
a) MH>MK
b) OMH < OMK
1) Cho đường tròn (0) (0 là tâm). Từ điểm S ở ngoài đường tròn (0) kẻ các tiếp tuyển SA và SB với (0) (A, B là các tiếp điểm). Kẻ cát tuyến SCD không đi qua tâm O (C nằm giữa S và D). Gọi I là trung điểm của CD.
a) Chứng minh các điểm S, A, I, O, B cùng nằm trên một đường tròn.
b) Chứng minh SI là đường phân giác của góc AIB.
c) Gọi M là giao điểm của hai đường thẳng SO và AB; N là giao điểm của hai đường thẳng SD và AB. Chứng minh MC.ND = NC.MD.
Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn . Qua a kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm ) . Tia Ax nằm giữa AB và AO cắt đường tròn O,R tại 2 điểm C và D (C nằm giữa A và D ) . Gọi M là trung điểm của dây CD, kẻ BH vuông góc với AO tại H
a/ tính OH . AO theo R
b/ cho góc ABC = góc ADB . Chứng minh AC.AD=AH.AOvà cho góc CHO=góc CDO =180°
c/Qua C kẻ tiếp tuyến thứ hai Cho với đuờng tròn (O) cắt OM tại E. Chứng minh điểm E,H,B thẳng hàng.
cho (O),hai dây AB và CD bằng nhau,các tia Ab và CD cắt nhau tại I nằm bên ngoài đường tròn.Chứng minh: a)OI là phân giác góc AIC b)gọi M,N lần lượt là trung điểm của AB và CD:O,I,M,N cùng thuộc 1 đường tròn