Cho đường tròn (O; R), đường kính BC. Lấy điểm A trên đường tròn ( O ) sao cho AB = R.
a) Tính số đo góc A, góc B, góc C và cạnh AC của tam giác ABC theo R
b)Đường cao AH của tam giác ABC cắt đường tròn ( O ) tại D. Chứng minh: BC là đường trung trực của AD và tam giác ABC đều.
c)Tiếp tuyến tại D của đường tròn ( O ) cắt đường thẳng BC tại E. Chứng minh: EA là tiếp tuyến của đường tròn ( O ).
d) Chứng minh : EB. CH = BH. EC
Cho đường tròn (O; R), đường kính BC. Lấy điểm A trên đường tròn ( O ) sao cho AB = R.
a) Tính số đo góc A, góc B, góc C và cạnh AC của tam giác ABC theo R
b)Đường cao AH của tam giác ABC cắt đường tròn ( O ) tại D. Chứng minh: BC là đường trung trực của AD và tam giác ABC đều.
c)Tiếp tuyến tại D của đường tròn ( O ) cắt đường thẳng BC tại E. Chứng minh: EA là tiếp tuyến của đường tròn ( O ).
d) Chứng minh : EB. CH = BH. EC
Cho đường tròn (O;R) và dây cung BC sao cho góc BOC = 90 độ. Tiếp tuyến với đường tròn tại B và C cắt nhau ở A. Trên cung nhỏ BC lấy điểm I, qua I vẽ tiếp tuyến với đường tròn cắt AB, AC lần lượt tại M và N.
a) Chứng minh tứ giác ABOC là hình vuông
b) OM, ON cắt BC lần lượt tại H và K. Chứng minh tứ giác OHNC nội tiếp
cho đường tròn o và dây cung ab với góc aob=120 hai tiếp tuyến tại a và b của đường tròn o cắt nhau tại c
a)CM tam giác abc là tam giác đều và tính diện tích abc theo R
b)lấy m thuộc cung nhỏ ab của đường tròn. vẽ tiếp tuyến m cắt ac và bc tại d và e. CM ad+be=de
c)CM GÓC dce=doe
Cho đường (O;R) và dây cung BC sao cho góc BOC =90 . Tiếp tuyến với đường tròn tại B và C cắt nhau ở A .Trên cung nhỏ BcC lấy điểm I, qua I vẽ tiếp tuyến với đường tròn cắt AB , AC lần lượt tại M,N .
a) Chứng minh tứ giác ABOC là hình vuông
b) OM,ON căt BC lần lượt tại H và K . Chứng minh tứ giác OHNC nội tiếp
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
16.Cho đường tròn (O;R), từ điểm A nằm ngoài sao cho OA = 2R kẻ tiếp tuyến AB của (O) (B là tiếp điểm). Từ B kẻ dây BC vuông góc OA, OA cắt (O) tại H.
a. CM: AC là tiếp tuyến của (O);
b. Tính AB theo R và chứng minh ABC là tam giác đều;
c. Từ O kẻ đường thẳng vuông góc với OB cắt AC tại D. CM: DH là tiếp tuyến của (O);
d. Tính AD, DH theo R.
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O; R). Tiếp tuyến tại B và C cắt nhau tại N.
a) Chứng minh: ON ^ BC.
b) Tiếp tuyến tại A của đường tròn (O) cắt tia NB tại M. Chứng minh: MN = MA + NC.
c) Kẻ đường cao BP của tam giác ABC. Chứng minh: AP.BN = CP.BM. Chứng minh: PB là tia phân giác của góc MPN.