Cho đường tròn (O;R) và A nằm ngoài đường tròn,Kẻ các tiếp tuyến AB;AC với đường tròn
a)Chứng minh ABOC nội tiếp
b)Gọi E là giao điểm của BC và OA.Chứng minh BE vuông góc OA và OE.OA=R^2
c)Trên cung nhỏ BC của (O) lấy K bất kì sao cho K không trùng với B và C.Tiếp tuyến tại K của đường tròn (O) cắt AB,AC theo thứ tự tại P và Q. Chứng minh tam giác APQ có chu vi không đổi khi K di chuyển trên cung nhỏ BC
d).Đường thẳng đi qua O và vuông góc với OA cắt AB,AC theo thứ tự tại các điểm M và N. chứng minh tam giác PMO đồng dạng tam giác ONQ
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại E
=>OE*OA=OB^2=R^2