Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Huyền

Cho đường tròn (O;R) và 1 điểm A nằm ngoài (O) sao cho OA=3R. Từ điểm A vẽ 2 tiếp tuyến AB,AC tới (O) (B,C là tiếp điểm)
a, Chứng minh tứ giác OBAC nội tiếp 
b, Từ B vẽ đường thẳng song song với AC cắt (O) tại D (D khác B); AD cắt (O) tại E (E khác D). Chứng minh AE.AD=AB^2,từ đó tính tích AD.AE theo R
c, Chứng minh CEA=BEC
d, Tia BE cắt AC tại F. Chứng minh F là trung điểm của AC

 

Hoàng Việt Tân
25 tháng 3 2022 lúc 21:37

Ta có hình vẽ sau: 

O A B C E D F

a)Vì các tiếp tuyến AB, AC của (O) có B,C ∈ (O) nên \(\widehat{ABO}=\widehat{OCA}=90^o\)

  Xét tứ giác OBAC có: \(\widehat{ABO}+\widehat{OCA}=90^o+90^o=180^o\)

                                      \(\widehat{ABO}\) và \(\widehat{OCA}\) đối nhau

➤ Tứ giác OBAC nội tiếp đường tròn đường kính OA

b) Vì góc nội tiếp \(\widehat{BDE}\) chắn \(\stackrel\frown{BE}\)\(\widehat{ABE}\) được tạo bởi tiếp tuyến AB và chắn \(\stackrel\frown{BE}\) nên 

\(sđ\dfrac{\stackrel\frown{BE}}{2}=sđ\widehat{ABE}=sđ\widehat{BDE}\) trong khi E ∈ AD

▲ABE và ▲ADB có: \(\widehat{ABE}=\widehat{BDA}\)(cmtrên)

                                   \(\widehat{A}\) là góc chung

⇒▲ABE ∼ ▲ADB(g-g) ⇔ \(\dfrac{AB}{AD}=\dfrac{AE}{AB}\Leftrightarrow AB^2=AD\cdot AE\)(điều phải chứng minh)

Vì ▲OAB vuông tại B nên ta có: \(AB^2+OB^2=OA^2\)(Định lý Pytago)

                                                   \(\Leftrightarrow AB^2=OA^2-OB^2=\left(3R\right)^2-R^2\) vì B∈(O) 

                                                                                         \(=9R^2-R^2\\=8R^2 \)  

Trong khi, \(AB^2=AD\cdot AE\)(cmtrên). \(AD\cdot AE=8R^2\left(=AB^2\right)\) 

 


Các câu hỏi tương tự
Admin'ss Thịnh's
Xem chi tiết
♡Trần Lệ Băng♡
Xem chi tiết
Thùy Anh Nguyễn
Xem chi tiết
minh châu nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Thị Kim Quỳnh
Xem chi tiết
đức
Xem chi tiết
Nyx Artemis
Xem chi tiết
Hải Nguyễn Kế
Xem chi tiết