Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó:ΔABC vuông tại AC
Xét ΔABC vuông tại C có \(\sin A=\dfrac{BC}{AB}=\dfrac{1}{2}\)
nên \(\widehat{A}=30^0\)
=>\(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có \(AB^2=BC^2+AC^2\)
nên \(AC=R\sqrt{3}\)
Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó:ΔABC vuông tại AC
Xét ΔABC vuông tại C có \(\sin A=\dfrac{BC}{AB}=\dfrac{1}{2}\)
nên \(\widehat{A}=30^0\)
=>\(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có \(AB^2=BC^2+AC^2\)
nên \(AC=R\sqrt{3}\)
1. Cho đường tròn tâm O đường kính AB, vẽ đường tròn tâm M đường kính OA. bán kính OC của đường tròn O cắt M tại D, vẽ CD vuông góc với AB. Tứ giác ADCH là hình gì?
2.Cho (O;R) Vẽ 2 bán kính OA;OB. Trên OA và OB lấy các điểm M,N sao cho OM=ON. Vẽ dây BC đi qua MN (M nằm giữa C và N)
a. So sánh MC và ND
b.Biết AOB=90 độ và CM=MN=MD. Tính OM theo R
3.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và cá góc A=45 độ. 2 đường tròn BE và CF cắt nhau tại E. CMR: B,E,O,F,C cùng nằm trên 1 đường tròn.
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho tam giác ABC vuông tại A, BC = a, r là bán kính của đường tròn nội tiếp tam giác. Chứng minh rằng r/a ≥ (√2 -1)/2
giải nhanh dùm mk nha thks nhìu
Cho đường tròn tâm O, bánh kính R và hai bán kính OA và BD vuông góc với nhau. Vẽ dây AM, BN bằng nhau, cắt nhau tại C nằm trong đường tròn tâm O (M,N cùng thuộc cung nhỏ AB). C/m:
a. OC vuông góc với AB
b. Tứ giác ANMB là hình thang cân.
cảm ơn mọi người nhiều
tam giác ABC,góc A=90,AB<AC nội tiếp đường tròn tâm (O) đường kính BC dây AD vuống góc vs BC.DB giao CA tại E ,qua E kẻ đường thẳng CA tại E.qua E kẻ đường thẳng vuống góc vs DC cắt DC ở H cắt AB ở S
cmr:a;tam giác EBF cân
b;tam giác HAF cân
c,HA là tiếp tuyến đường tròn tâm (O)
Cho nửa đường tròn tâm O.Đường kính AB,AC là dây cung của nó.
Tiếp tuyến Ax; phân giác góc CAx giao với BC tại D.AD giao với đường tròn tâm O tại E.
Chứng minh:
a, Tam giác ABD cân. OE song song với BD.
b,AC giao với BE tại I. Chứng minh DI vuông góc với AB.
c,C di động trên nửa đường tròn tâm O thì D chạy trên đường nào
Cho đường tròn (O;R) và các tiếp tuyến AB ;AC cắt nhau tại A nằm ngoài đường tròn ( B;C là các tiếp điểm ) . Gọi H là giao điểm của BC và OA
a) CMR: Oa vuông góc với BC và OH.OA=R^2
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuuong góc với BD ( K thuộc BD) CMR AO sông song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK . CMR tam giác BIK và tam GIác CHK có diện tích bằng nhau
cho đường tròn (o;5)đường kính ab gọi e là một điểm nằm trên ab sao cho be=2cm. qua trung điểm H của đoạn AE vẽ dây cung CD vuông góc AB
a) tứ giác aced là hình gì? vì sao
b)gọi i là giao điểm của DE với BC. c/m/r:i thuộc đường tròn (o') đường kính EB
c) chứng minh HI là tiếp tuyến chủa đường tròn (o')
d) tính độ dài đoạn HI
Cho nửa đường tròn (O;R) đường kính AB. Trên đoạn Ao lấy điểm C, vẽ tia Cx vuông góc với AB, tia Cx cắt nửa đường tròn (O) tại D, Trên cung BD lấy điểm M. kẻ tia BM cắt Cx tại E. Giao điểm của AM và Cx là H , tia BH cắt nửa đường tròn (O) ở N. Gọi I là trung điểm của EH
a. CMR: H là trực tâm của tam giác ABEb. CMR: NI là tiếp tuyến của nửa đường tròn (O)c.CMR: khi M chuyển động trên cung BD thì đường thẳng MN luôn đi qua 1 điểm cố định