a: ΔOCD cân tại O
mà OH là đường cao
nên H là trung điểm của CD và OH là phân giác của góc COD
=>HC=HD=4cm
=>OH=3cm
OM=OC^2/OH=5^2/3=25/3(cm)
\(MC=\sqrt{\left(\dfrac{25}{3}\right)^2-5^2}=\dfrac{20}{3}\left(cm\right)\)
sin OCH=OH/OC=3/5
b: Xét ΔCOM và ΔDOM có
OC=OD
góc COM=góc DOM
OM chung
Do đo: ΔCOM=ΔDOM
=>góc DOM=90 độ
=>MD là tiếp tuyến của (O)
c: Xét tứ giác OCMD có
góc OCM+góc ODM=180 độ
nên OCMD là tứ giác nội tiếp