Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Trang

Cho đường tròn (O) và hai dây MA, MB vuông góc với nhau. Gọi I, K lần lượt là điểm chính giữa của các cung nhỏ MA và MB. Gọi P là giao điểm của AK và BI. Chứng minh :

a) ba điểm A, O, B thẳng hàng 

b) P là tâm đường tròn nội tiếp tam giác MAB

Kiều Vũ Linh
4 tháng 10 lúc 7:55

loading...

a) Do MA ⊥ MB (gt)

⇒ ∠MAB = 90⁰

⇒ M, A, B thuộc đường tròn đường kính AB

Mà M, A, B thuộc (O)

⇒ O là trung điểm của AB

⇒ A, O, B thẳng hàng

b) Do I là điểm chính giữa của cung nhỏ MA (gt)

⇒ sđ cung AI = sđ cung MI

⇒ ∠ABI = ∠MBI (hai góc nội tiếp chắn hai cung bằng nhau)

⇒ BI là tia phân giác của ∠ABM

Do K là điểm chính giữa của cung MB (gt)

⇒ sđ cung BK = sđ cung MK

⇒ ∠BAK = ∠MAK (hai góc nội tiếp chắn hai cung bằng nhau)

⇒ AK là tia phân giác của ∠BAM

Mà P là giao điểm của AK và BI (gt)

⇒ P là giao điểm của ba đường phân giác của ∆MAB

⇒ P là tâm đường tròn nội tiếp ∆MAB

a.

Do \(OM=OA=R\Rightarrow\Delta OAM\) cân tại O

\(\Rightarrow\widehat{OAM}=\widehat{OMA}\Rightarrow\widehat{AOM}=180^0-\left(\widehat{OAM}+\widehat{OMA}\right)=180^0-2\widehat{OMA}\)

Tương tự, \(\Delta OBM\) cân tại O

\(\Rightarrow\widehat{BOM}=180^0-2\widehat{OMB}\)

\(\Rightarrow\widehat{AOM}+\widehat{BOM}=360^0-2\left(\widehat{OMA}+\widehat{OMB}\right)\)

\(\Rightarrow\widehat{AOM}+\widehat{BOM}=360^0-2.\widehat{AMB}=360^0-2.90^0=180^0\)

\(\Rightarrow A,O,B\) thẳng hàng

b.

Do I là điểm chính giữa cung MA \(\Rightarrow sđ\stackrel\frown{AI}=sđ\stackrel\frown{MI}\Rightarrow\widehat{ABI}=\widehat{MBI}\)

\(\Rightarrow BI\) là tia phân giác góc \(\widehat{ABM}\) (1)

Do K là điểm chính giữa cung MB \(\Rightarrow sđ\stackrel\frown{MK}=sđ\stackrel\frown{BK}\Rightarrow\widehat{MAK}=\widehat{BAK}\)

\(\Rightarrow AK\) là tia phân giác góc \(\widehat{MAB}\) (2)

(1);(2) \(\Rightarrow P\) là giao điểm 2 đường phân giác trong của tam giác MAB

\(\Rightarrow P\) là tâm đường tròn nội tiếp tam giác MAB

loading...


Các câu hỏi tương tự
Virus
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Xuân Thường Đặng
Xem chi tiết
phạm trung hiếu
Xem chi tiết
Phạm Hoàng Hiền Lương
Xem chi tiết
Trường Nguyễn Công
Xem chi tiết
duong
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Đào Thu  Hương
Xem chi tiết
ngocha_pham
Xem chi tiết