Cho đường tròn (O) và 2 dây MA,MB vuông góc với nhau. Gọi I,K lần lượt là điểm chính giữa của các cung nhỏ MA và MB. Gọi P là giao điểm của AK và BI
a) Cmr 3 điểm A,O,B thẳng hàng
b) Cmr P là tâm đường tròn nội tiếp tam
giacs MAB
c) Giả sử MA=12cm, MB=16cm, tính bán kính của đường tròn nội tiếp tam giác MAB
Cho (O) và hai dây MA và MB vuông góc với nhau. Gọi I và K lần lượt là điểm chính giữa của cung nhỏ MA và MB. Gọi P là giao của AK và BI.
a) A,O,B thẳng hàng
b) P là tâm đường tròn nội tiếp tam giác MAB.
c*) giả sử: MA= 12cm, MB= 16cm. Tính bán kính đường tròn nội tiếp tam giác MAB.
Cho đường tròn (o) và hai dây MA,MB vuông góc với nhau. Gọi I và K lần lượt là điểm chính giữa của các cung nhỏ MA và MB. Gọi P là giao điểm của AK và BI.
a. Chứng minh rằng ba điểm A, O, B thẳng hàng.
b. Chứng minh rằng P là tâm đường tròn nội tiếp tam giác MAB
c. Giả sử MA=12; MB=16, tính bán kính của đường tròn nội tiếp tam giác MAB.
Cho (O) và 2 dây MA, MB vuông góc với nhau. Gọi I,K lần lượt là điểm chính giữa của các cung nhỏ MA và MB
a, Chứng minh A,O,B thẳng hàng
b, Gọi P là giao điểm của AK và BI. Chứng minh P là tâm đường tròn nội tiếp tam giác MAB
Cho đường tròn (O) và hai dây MA, MB vuông góc với nhau. Gọi I, K lần lượt là điểm chính giữa của các cung nhỏ MA và MB
a, Chứng minh ba điểm A, O, B thẳng hàng
b, Gọi P là giao điểm của AK và BI. Chứng minh P là tâm đưòng tròn nội tiếp tam giác MAS
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA,MB với đường tròn.
a. Cm: Tứ giác MAOB nội tiếp
b. Kẻ dây AC song song với BM. Đường thẳng MC cắt đường tròn (O) tại điểm thứ hai là D (D khác C). Gọi E là giao điểm của AD và MB. Cm: \(^{BE^2=DE.AE}\) và BE=ME
c. Gọi H và K lần lượt là giao điểm của MO với AB và đường tròn (O) ( H nằm giữa M và K), HE cắt AK tại I. Cm: AK vuông góc với BI
cho đường tròn (o) . Từ điểm M ở bên ngoài (O)vẽ hai tiếp tuyến MA, MB vs (O) (A,B là hai tiếp điểm). Trên cung nhỏ AB lấy một điểm C, gọi D,E,F lần lượt là hình chiếu vuông góc của điểm C lên các đoạn thẳng AB,MA,MB.
A)cm các tứ giác AECD, BFCD là tứ giác nội tiếp. Xác định tâm và bán kính của các đường tròn ngoại tiếp hai tứ giác đó
b) cm CD2= CE.CF
C) Gọi I là giao điểm của AC và DE, K là giao điểm của BC và DF. CM 4 điểm I,C,K,D cùng thuộc một đường tròn
d) CM IK cuông góc vs CD
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không trùng với A và B). Từ điểm C kẻ CD vuông góc với AB, CE vuông góc với MA, CF vuông góc với MB( D ∈ A B , E ∈ M A , F ∈ M B ) . Gọi I là giao điểm của AC và DE K là giao điểm của BC và DF. Chứng minh rằng
1) Tứ giácABCE nội tiếp một đường tròn.
2) Hai tam giác CDE & CFD đồng dạng.
3) Tia đối của tia CD là tia phân giác góc E C F ⏞
4) Đường thẳng IK song song với đường thẳng AB
Cho đường tròn (O). Từ điểm M nằm ngoài đường tròn (O) hẻ hai tiếp tuyến MA,MB của (O) ( với A,B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt (O) tại N ( khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K. a) Chứng minh tứ giác NHBI nội tiếp. b) Chứng minh tam giác NHI đồng dạng với tam giác NIK. c) Gọi C là giao điểm của NB và HI, gọi D là giao điểm của Na và KI, Đường thẳng CD cắt MA tại E. Chứng minh CI = EA.