Cho đường tròn (O) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường tròn (B là tiếp điểm).
1) Tính số đo các góc của tam giác OAB.
2) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC là tiếp tuyến của đường tròn (O).
3) Đoạn thẳng AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
16.Cho đường tròn (O;R), từ điểm A nằm ngoài sao cho OA = 2R kẻ tiếp tuyến AB của (O) (B là tiếp điểm). Từ B kẻ dây BC vuông góc OA, OA cắt (O) tại H.
a. CM: AC là tiếp tuyến của (O);
b. Tính AB theo R và chứng minh ABC là tam giác đều;
c. Từ O kẻ đường thẳng vuông góc với OB cắt AC tại D. CM: DH là tiếp tuyến của (O);
d. Tính AD, DH theo R.
Cho đường tròn (O;R) điểm A nằm ngoài đường tròn OA = 2R vẽ tiếp tuyến AB; AC (B; C là tiếp điểm)
a) Chứng minh AB = AC
b) Chứng minh tam giác ABC đều
c) Đường thẳng OA cắt đường tròn (O) tại M, N . Chứng minh ABNC là hình thoi
cho đường tròn (O;R) và điểm A nằm ngoài đường tròn (O) sao cho OA=2R. vẽ tiếp tuyến AB với đường tròn (O). BH là đường cao của tam giác ABO, BH cắt (O) tại C.
a. CM: AC là tiếp tuyến của (O)
b. từ O vẽ đường thẳng vuông góc với OB cắt AC tại K. chứng minh KA=KO.
c. đoạn thẳng OA cắt (O) tại I. chứng minh KI là tiếp tuyến của đường tròn (O) và tính IK theo R
Cho đường tròn (O;R) lấy điểm A nằm ngoài đường tròn sao cho OA= 2R. Qua A kẻ 2 tiếp tuyến AB, AC với đường tròn (O), (B,C là các tiếp điểm).
a) Tính số đo dóc AOB
b) Từ A kẻ đường thẳng vuông gốc với AC cắt tia OB tại M. C/m MA= MO
c) Lấy I là trong điểm của OA. Chứng minh I là tâm đường tròn nội tiếp tam giác ABC.
16.Cho đường tròn (O;R), từ điểm A nằm ngoài sao cho OA = 2R kẻ tiếp tuyến AB của (O) (B là tiếp điểm). Từ B kẻ dây BC vuông góc OA, OA cắt (O) tại H
. a. CM: AC là tiếp tuyến của (O);
b. Tính AB theo R và chứng minh ABC là tam giác đều;
c. Từ O kẻ đường thẳng vuông góc với OB cắt AC tại D. CM: DH là tiếp tuyến của (O);
d. Tính AD, DH theo R.
Cho đường tròn tâm (O;R) và điểm A nằm ngoài đường tròn sao cho OA=R căn 2. Từ A kẻ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm).lấy D thuộc AB;E thuộc AC sao cho chu vi của tam giác ADE=2R.
1.Chứng minh tứ giác ABOC là hình vuông.
2.Chứng minh DE là tiếp tuyến của đường tròn (O;R).
3.tìm giá trị lớn nhất của tam giác ADE.
Cho đường tròn tâm (O;R) và điểm A nằm ngoài đường tròn sao cho OA=R căn 2. Từ A kẻ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm).lấy D thuộc AB;E thuộc AC sao cho chu vi của tam giác ADE=2R.
1.Chứng minh tứ giác ABOC là hình vuông.
2.Chứng minh DE là tiếp tuyến của đường tròn (O;R).
3.tìm giá trị lớn nhất của tam giác ADE.