a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
b: Xét ΔOBA vuông tại B có BH làđường cao
nên OH*OA=OB^2=R^2
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
b: Xét ΔOBA vuông tại B có BH làđường cao
nên OH*OA=OB^2=R^2
Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC với đường tròn tâm (O;R) (với B và C là hai tiếp điểm). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh : bốn điểm A B O C cùng thuộc 1 đường tròn và OA ⊥ BC.
b) Vẽ đường kính B của (O;R), đoạn thẳng AD cắt (O;R) tại E ( E ≠ D). Chứng minh: AC2 = AE.AD
Bài 1. Từ điểm
A
ở ngoài đường tròn
(O R; )
, vẽ hai tiếp tuyến
AB AC ,
đến
(O R; )
với
BC,
là các tiếp
điểm. Tia
AO
cắt dây
BC
tại
H .
a)Chứng minh:
OA
là đường trung trực của đoạn thẳng BC và
2 AB AH AO =
.
b)Vẽ đường kính
BD
của
(O R; )
. Gọi
M
là trung điểm của
CD
. Chứng minh
OMCH
là hình
chữ nhật.
Từ điểm A ở ngoài đường tròn (O,R) vẽ hai tiếp tuyến AB và AC đến (O,R), với B và C là các tiếp điểm. Tia AO cắt dây BC tại H.
a) Chứng minh OA là trung trực của đoạn thẳng BC và AB2 = AH . AO
b) Vẽ đường kính BD của (O,R). Gọi M là trung điểm CD. Tiếp tuyến tại D của (O) cắt BC tại E. Chứng minh ∆DME ~ ∆BOE.
c) Tia EM cắt BD tại K, tia EO cắt CD tại I. Chứng minh IK ⊥ OD.
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
16.Cho đường tròn (O;R), từ điểm A nằm ngoài sao cho OA = 2R kẻ tiếp tuyến AB của (O) (B là tiếp điểm). Từ B kẻ dây BC vuông góc OA, OA cắt (O) tại H.
a. CM: AC là tiếp tuyến của (O);
b. Tính AB theo R và chứng minh ABC là tam giác đều;
c. Từ O kẻ đường thẳng vuông góc với OB cắt AC tại D. CM: DH là tiếp tuyến của (O);
d. Tính AD, DH theo R.
Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc với BC b) Từ B vẽ đường thẳng song song với AC cắt đường tròn tâm (O) tại D (D khác B), AD cắt đường tròn (O) tại E (E khác D). Tính tích AD.AE theo R. c) Tia BE cắt AC tại F. Chứng minh F là trung điểm AC. d) Tính theo R diện tích tam giác BDC.
Cho đường tròn (O ; R) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp tuyến). Gọi H là giao điểm của OA và BC. a) Chứng minh: OA vuông góc BC và OH.OA=R² b) Kẻ đường kính BD của (O), AD cắt (O) tại E. Chứng minh: AH.AO= AE.AD c) Chứng minh: HC là phân giác của góc DHE
16.Cho đường tròn (O;R), từ điểm A nằm ngoài sao cho OA = 2R kẻ tiếp tuyến AB của (O) (B là tiếp điểm). Từ B kẻ dây BC vuông góc OA, OA cắt (O) tại H
. a. CM: AC là tiếp tuyến của (O);
b. Tính AB theo R và chứng minh ABC là tam giác đều;
c. Từ O kẻ đường thẳng vuông góc với OB cắt AC tại D. CM: DH là tiếp tuyến của (O);
d. Tính AD, DH theo R.
Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B, C là hai tiếp điểm). Gọi I là giao điểm của OA và BC; H là hình chiếu của điểm C trên đường kính BD của đường tròn (O).
a) Chứng minh: ABOC là tứ giác nội tiếp
b) Tính tích OI . OA theo R
c) Chứng minh tam giác BIH cân
d) Kẻ AD cắt CH tại K. Chứng minh IK // BH