cho 2 đường tròn (o r) và (o' r') tiếp xúc ngoài tại A.Một tiếp tuyến chung tại BC của (o),(o') . a) chứng minh đường tròn đường kính BC tiếp xúc với đường thẳng OO' và đường tròn OO' tiếp xúc với đường thẳng BC.b) Tính BC theo R và R'
19 . Cho 2 đường tròn ( O; R ) và ( O' r ). Biết OO' = 4cm, R = 7cm, r = 3cm. Thì 2 đường tròn đã cho :
A. Cắt nhau
B. Tiếp xúc trong
C. Ở ngoài nhau
D. Tiếp xúc ngoài
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (O) đường kính BH và đường tròn tâm O' đường kính CH, hai đường tròn này cắt AB, AC thứ tự tại E và F
a, Tứ giác AEHF là hình gì?
b, Chứng minh EF là tiếp tuyến chung của (O) và (O’)
c, Chứng minh đường tròn đường kính OO' tiếp xúc với EF
d, Cho đường tròn tâm I bán kính r tiếp xúc với EF, (O) và (O’). Tính r theo BH và CH?
Cho đường tròn (O;9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc với đường tròn tâm O và mỗi đường tròn trên đếu tiếp xúc với hai đường tròn khác bên cạnh nó. Tính giá trị của R.
Cho đường tròn (O;9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc với đường tròn tâm O và mỗi đường tròn trên đếu tiếp xúc với hai đường tròn khác bên cạnh nó. Tính giá trị của R.
cho hai đường tròn ( O ; R ) và ( O' ; R' ) tiếp xúc ngoài tại A ( R > R' ). vẽ dây AM của đường tròn ( O ) và dây AN của đường tròn ( O' ) sao cho AM vuông góc AN. gọi BC là 1 tiếp tuyến chung ngoài của hai đường tròn ( O ) và ( O' ) với B thuộc ( O ) và C thuộc ( O' )
a) CMR : 3 đường thẳng MN,BC và OO' đồng quy
b) xác định vị trí của M và N để tứ giác MNOO' có diện tích lớn nhất. tính giá trị lớn nhất đó
Cho các đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A (R > R’). Vẽ đường kính AB của (O), AB cắt (O’) tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O’), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a, AP là phân giác của B A Q ^
b, CP và BR song song với nhau
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài với nhau tại A. Vẽ tiếp tuyến chung ngoài BC với B ∈ (O), C ∈ (O'). Đường vuông góc với OO' kẻ từ A cắt BC ở M
a, Tính MA theo R và r
b, Tính diện tích tứ giác BCO'O theo R và r
c, Tính diện tích ∆BAC theo R và r
d, Gọi I là trung điểm của OO'. Chứng minh rằng BC là tiếp tuyến của đường tròn (I; IM)
cho (O,R) và (O',R') với R>R' tiếp xúc trong với nhau tại A.đường nối tâm oo' cắt đường tròn (o) và (o') lần lượt tại b và c vẽ đường tròn (m) và (n) có đk BC và oo' a) cmr bc=2oo' và am=2an b) từ a vẽ tiếp tuyến AE với đường tròn (N) Cm ae cx là tiếp tuyến đường tròn (m)