a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
=>OBAC là tứ giác nội tiếp
b: Xét (O) có
DB,DM là tiếp tuyến
=>DB=DM và OD là phân giác của \(\widehat{BOM}\left(1\right)\)
Xét (O) có
EM,EC là tiếp tuyến
=>EM=EC và OE là phân giác của \(\widehat{MOC}\left(2\right)\)
\(C_{ADE}=AD+DE+AE\)
\(=AB-BD+DM+ME+AC-CE\)
\(=AB+AC=2AB\)
c: \(\widehat{DOE}=\widehat{DOM}+\widehat{EOM}\)
\(=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{COM}\right)=\dfrac{1}{2}\cdot\widehat{BOC}\)