Đáp án A
Đường thẳng d và đoạn thẳng AB có điểm chung khi và chỉ khi 2 điểm A và B nằm về hai phía của đường thẳng d hoặc có điểm thuộc đường thẳng d.
Nên ( 4- 14+m) ( -12-28+ m) ≤ 0
Hay 10 ≤ m ≤ 40
Đáp án A
Đường thẳng d và đoạn thẳng AB có điểm chung khi và chỉ khi 2 điểm A và B nằm về hai phía của đường thẳng d hoặc có điểm thuộc đường thẳng d.
Nên ( 4- 14+m) ( -12-28+ m) ≤ 0
Hay 10 ≤ m ≤ 40
Cho đoạn thẳng AB với A(1;2) và B( -3; 4) và đường thẳng d : x = m + 2 t y = 1 - t .Tìm m để d cắt đoạn thẳng AB.
A.m < 3
B. m = 3
C.m > 3
D. Không có m nào
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(1;2), B(2;1) và M(1;3). a, Viết phương trình đường thẳng AB b, Tính khoảng cách từ điểm M đến đường thẳng △: 3x + 4y + 10 = 0 c, Viết phương trình đường thẳng d, biết d đi qua điểm A và cắt tia Ox, Oy thứ tự tại C,N sao cho tam giác OCN có diện tích nhỏ nhất? Mn giúp mình với 😥😥
Trong mặt phẳng Oxy cho ba điểm A(-6;3), B(0;-1), C(3;2) a) Viết phương trình tham số với đường thẳng AB b) Viết phương trình đường thẳng d đi qua C và vuông góc với đường thẳng AB c) Tìm tọa độ điểm m trên đường thẳng d 2x- y + 3 = 0 sao cho | vectơ MA + vectơ MB + MC| nhỏ nhất
Trong mặt phẳng Oxy cho ba điểm A(-6;3), B(0;-1), C(3;2) a) Viết phương trình tham số với đường thẳng AB b) Viết phương trình đường thẳng d đi qua C và vuông góc với đường thẳng AB c) Tìm tọa độ điểm m trên đường thẳng d 2x- y + 3 = 0 sao cho | vectơ MA + vectơ MB + MC| nhỏ nhất
1. Cho M(3;-1) và đường thẳng d: 3x-4y+12=0. Tìm N đối xứng với M qua d.
2. Cho M(8;2) và đường thẳng d: 2x-3y+3=0. Tìm N đối xứng với M qua d.
3. Cho đường thẳng d: x+y-5=0 và I(2;0). Tìm điểm M thuộc d sao cho MI=3.
4. Cho tam giác ABC có M(2;-1) là trung điểm AB. Đường trung tuyến và đường cao qua A lần lượt là: d1: x+y-7=0 và d2: 5x+3y-29=0.
a.Tìm điểm A và viết pt cạnh BC.
b. Viết pt cạnh AC.
CÁC BẠN GIẢI GIÚP MÌNH VỚI NHÉ. CẢM ƠN
Cho đường tròn (C): x 2 + y 2 + 4 x − 4 y − 10 = 0 và đường thẳng ∆: x + y + m = 0. Giá trị m để đường thẳng tiếp xúc với đường tròn là:
A. m = ± 6
B. m = ± 3
C. m = ± 8
D.Không tồn tại m
Câu 1: cho tam ABC. Có bao nhiêu điểm M thỏa mãn | vecto MA+vectoMB+vectoMC| = 3
a.1
b.2
c.3
d. vô số
Câu 2: cho tam giác ABC đều cạnh a. biết rằng tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+3vectoMB+4vectoMC|=|vectoMB-vectoMA| là đường tròn cố định có bán kính R. tính bán kính R theo A?
Câu 3: Cho 2 điểm A.B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+vectoMB|=|vectoMA+2vectoMB| là:
a. đường trung trực của đoạn thẳng AB
b. đường tròn đường kính AB
c. đường trung trực của đoạn thẳng IA
d. đường tròn tâm A, bán kính AB
Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:
A. đường trung trực của đoạn AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.
A. R = a/3
B. R = a/9
C. R = a/2
D. R = a/6
Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?
A.1
B.2
C.3
D. vô số
Cho đường tròn (C): x 2 + y 2 - 6 x + 8 y - 24 = 0 và đường thẳng ∆ : x + y – m = 0. Để đường thẳng ∆ cắt (C) theo dây cung AB có độ dài bằng 10 thì giá trị của m là:
A. m = 1 ± 4 3
B. m = - 1 ± 4 3
C. m = - 1 ± 2 6
D. Không tồn tại giá trị của m