Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) với \(a,b,c,d\ne0\). Chứng minh \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Cho a,b,c thỏa mãn ab+bc+ca =1. Chứng minh rằng
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
Cho \(\dfrac{1}{c}=\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)(với a,b,c \(\ne\)0, b \(\ne\)c) . Chứng minh rằng \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Cho \(a,b,c\ne0\) và \(a+b+c=\dfrac{a+2b-c}{c}=\dfrac{b+2c-a}{a}=\dfrac{c+2a-b}{b}\)
Tính \(P=\left(2+\dfrac{a}{b}\right)\left(2+\dfrac{b}{c}\right)\left(2+\dfrac{c}{a}\right)\)
Cho 3 số a,b,c đôi 1 khác nhau. CMR:
\(\dfrac{b-c}{\left(a-b\right).\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right).\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right).\left(c-b\right)}=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\).Chứng minh rằng
\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
cho tỉ lệ thức\(\dfrac{a}{c}=\dfrac{c}{b}\)chứng minh\(\dfrac{a}{b}=\dfrac{\left(a+c\right)^2}{\left(b+c\right)^2}\)
Bài 1:
a) Cho a(y+z) = b(z+c) = c(x+y) Tính: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-c}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
b) \(Cho\dfrac{a}{2014}=\dfrac{b}{2015}=\dfrac{c}{2016}cm:4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
c) \(\dfrac{a}{a'}+\dfrac{b'}{b}=1\) và \(\dfrac{b}{b'}+\dfrac{c'}{c}=1\)
cm: abc+a'b'c'=0
bài 4:
a) \(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\) Tính: \(\dfrac{x}{y}\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) Tính P = \(\dfrac{xy+yz+xz}{x^2+y^2-z^2}\)
c) \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
Tính : P = \(\dfrac{a+b}{c+d}+\dfrac{c+b}{a+d}=\dfrac{c+d}{a+b}=\dfrac{a+d}{c+b}\)
d) \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\) Tính: \(P=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Cho a,b,c thỏa mãn :
\(\dfrac{1}{a+b+c}=\dfrac{a+4b-c}{c}=\dfrac{b+4c-a}{a}=\dfrac{c+4a-b}{b}\)
Tính: \(P=\left(2+\dfrac{a}{b}\right)\left(3+\dfrac{b}{c}\right)\left(4+\dfrac{c}{a}\right)\)
Ai giải giúp mik với mik đag cần