Cho \(\Delta ABC\) vuông tại A, có BC=10cm , AC=8cm .kẻ đường phân giác BI ( I \(\in\) AC ), Kẻ ID vuông góc với BC ( D \(\in\) BC ).
a/ Tính AB
b/ Chứng minh \(\Delta\)AIB=\(\Delta DIB\)
c/ Chứng minh BI là đường trung trực của AD
d/ Gọi E là giao điểm của BA và DI . Chứng minh BI vuông góc với EC
ai làm đc cho 10 điểm
a) ΔABC vuông tại A
Áp dụng định lý Pi-ta-go ta có:
BC2 = AC2+AB2
⇒BC2-AC2=AB2
⇒100-64=AB2
⇒36=AB
⇒AB=6(cm)
b) Xét ΔAIB và ΔDIB có:
góc BAI = góc BDI (= 90 độ)
Chung IB
góc IBA = góc IBD (gt)
⇒ ΔAIB = ΔDIB (ch-gn)
⇒ BA = BD (2 cạnh tương ứng)
c) Gọi giao BI và AD là F
Xét ΔABF và ΔDBF có:
AB = DB (cmb)
góc ABF = góc DBF (gt)
chung BF
⇒ ΔABF = ΔDBF (c.g.c)
⇒ FA = FD (2 cạnh tương ứng)
góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD
Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD
d) Gọi giao của BI và EC là G
Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC
a, xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(Pytago\right)\)
\(=>AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-8^2}=6cm\)
b, ta có BI là phân giác góc ABD=> góc ABI=góc DBI(1)
có ID vuông góc BC=>góc BDI=90 độ
mà tam giác ABC vuông tại A=>góc BAI=90 độ
=> góc BAI=góc BDI(=90 độ)(2)
có BI cạnh chung giữa 2 tam giác AIB và tam giác DIB(3)
từ(1)(2)(3)=>tam giác AIB=tam giác DIB(c.g.c)
c,gọi giao điểm BI và AD là K
,ta có tam giác AIB=tam giác DIB=>AB=BD
=>tam giác BAD cân tại B có BI là phân giác nên đồng
thời là trung trực của AD tại K
d,gọi giao điểm BI với EC là M
xét tam giác BEC có ED vuông góc với BC(vì ID vuông góc BC)
có CA vuông góc BE(vì góc BAC=90 độ)
=>EI vuông góc với BC tại D
CI vuông góc BE tại A
=>I là trực tâm tam giác BEC=>BI vuông góc EC tại M