a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔBEC có
EM là đường trung tuyến
EM là đường cao
Do đó: ΔEBC cân tại E
mà EA là đường trung tuyến
nên EA là tia phân giác của góc BEC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔBEC có
EM là đường trung tuyến
EM là đường cao
Do đó: ΔEBC cân tại E
mà EA là đường trung tuyến
nên EA là tia phân giác của góc BEC
2. Cho ΔABC có AB=AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Chứng minh:
a) ΔABM = ΔACM
b) AD⊥ BC
c) CM là tia phân giác góc DCA
VẼ HÌNH VÀ GIẢI GIÚP MÌNH LUN AH
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM
b) Chứng minh rằng AK = 2.MC
c) Tính số đo của?
Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung
điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh: ΔABM = ΔDCM. Từ đó suy ra AB // CD.
b) Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm
của AE. Chứng minh: góc CAI = góc CEI và tính số đo góc CAE.
c) Kẻ AH vuông góc BC ( H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thằng AH tại F. Chúng minh: AF = BC
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM b) Chứng minh rằng AK = 2.MC c) Tính số đo của ∠MAK
Cho ΔABC có AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Cm: ΔABM = ΔDCMvà AB // CD.
b) Cm: ΔABM = ΔACM và AM \(\perp\) BC.
c) Trên các tia đối của tia BA và tia CA lần lượt lấy điểm E và điểm F sao cho BA = BE, CF = CA. Cm: ba điểm E, F, D thẳng hàng.
cho ΔABC, AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Nối B với D. Gọi M là trung điểm của BD.
A. chứng minh ΔABM=ΔADM.
B.Chứng minh: AM là tia phân giác của góc BAC.
C.Trên tia AB lấy điểm E sao cho AE=AC.Chứng minh DE=BC
D.Gọi I là giao điểm của BC và DE. Chứng minh A,M,I thẳng hàng
Bài 9. Cho ΔABC vuông ở A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
a. Chứng minh ΔABC = ΔABD
b. Trên tia đối của tia AB, lấy điểm M. Chứng minh ΔMBD = ΔMBC.
Bài 10. Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox, lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên tia Oz, lấy điểm I bất kì. Chứng minh:
a. ΔAOI = ΔBOI.
b. AB ⊥ OI.
Bài 11. Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm E sao cho ME = MA.
a. Chứng minh AC // BE.
b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. Chứng minh 3 điểm I, M, K thẳng hàng.
Bài 2 Cho tam giác nhọn ABC (AB < AC). Gọi M là trung điểm của BC. Trên tia
đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh ABM = DCM.
b) Kẻ AH vuông góc với BC (H BC). Vẽ điểm E sao cho H là trung điểm
của EA. Chứng minh BE = CD.
Bài 3: . Cho ΔABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm
của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh ΔABD = ΔACD
b) Chứng minh rằng AM = 2.BD
c) Tính số đo của ·MAD