\(P\left(x\right)=3x^4-3x^4+x^2+5\\
P\left(x\right)=x^2+5\)
\(P\left(0\right)=0^2+5\\
P\left(0\right)=5\\
P\left(-3\right)=-3^2+5\\
P\left(-3\right)=9+5\\
P\left(-3\right)=14\)
a P (x) = 3x4 + x2 - 3x4 + 5
P (x) = (3x4-3x4)+x2+5
P (x) =x2+5
b
ta có
P(0)=02+5=0+5=5
P(-3)=(-3)2+5=9+5=14
`a)`
P(x)=3x^4+x^2-4x^4+5`
`=(3x^4-3x^4)+x^2+5`
`=x^2+5`
`b)`
`P(0)=>x=0`
`=>0^2+5=5`
`P(-3)=>x=-3`
`=>(-3)^2+5=9+5=14`