Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Nguyễn Khánh Uyên

Cho các số x,y,z thỏa mãn: 

x+y+z=1 và x/(y+z)+y/(z+x)+z/(x+y)=1.Tính x2/(y+z)+y2/(x+z)+z2/(x+y)+?

 

ngonhuminh
27 tháng 12 2016 lúc 10:26

Lần sau bạn nhớ gửi đường dẫn câu hỏi nhé:

vào tìm câu hỏi qua Thông kế--> câu hỏi khác--> mỏi và ngại lắm.

\(x+y+z=1\left(1\right)\)

\(\frac{x}{z+z}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}=1\left(2\right)\)

Lấy (1) nhân (2)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{z+y}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y\right)\frac{z}{\left(x+y\right)}+\left(y+z\right).\frac{x}{\left(z+y\right)}+\left(x+z\right).\frac{y}{\left(z+x\right)}=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y+z\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+1=1\)

\(\Rightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)=0\)

Chưa thạo bước 2 nhân phân phối bt hết ra rồi ghép lại 

(mình hay lang thang xem lời giải => thấy cách nhân ghép luôn đỡ mỏi)

ngô việt hoàng
27 tháng 12 2016 lúc 10:52

Hay ! mình thì nhân hết ra mệt thật

Trần đức anh
30 tháng 7 2017 lúc 16:25

đúng vậy


Các câu hỏi tương tự
Nhicute
Xem chi tiết
Nguyễn Bá Hào
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Phú Hoàng Phong
Xem chi tiết
calijack
Xem chi tiết
Cá cầm phóng lợn Top 1
Xem chi tiết
Pham Trong Bach
Xem chi tiết
le thi thu huyen
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết