Lời giải:
Áp dụng BĐT AM-GM:
$12=x^2+4+4y\geq 2\sqrt{4x^2}+4y=4x+4y=4(x+y)$
$\Rightarrow x+y\leq 3$
Tiếp tục áp dụng BĐT AM-GM:
$P=x+y+\frac{10}{x+y}=(x+y)+\frac{9}{x+y}+\frac{1}{x+y}$
$\geq 2\sqrt{(x+y).\frac{9}{x+y}}+\frac{1}{x+y}$
$=6+\frac{1}{x+y}\geq 6+\frac{1}{3}=\frac{19}{3}$ (do $x+y\leq 3$)
Vậy $P_{\min}=\frac{19}{3}$
Giá trị này đạt tại $x=2; y=1$