Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng:
\(18\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(9+5\sqrt{3}\right)\left(a^2+b^2+c^2\right)\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\ge\dfrac{1}{2}\)
Cho a, b,c là các số thực dương thỏa mãn: \(ab+bc+ca=1.\)
Chứng minh rằng: \(\frac{1}{abc}+\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9\sqrt{3}}{2}\)
Cho các số dương a,b,c cs abc=1 Chứng minh rằng
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3\)
Chứng minh \(\dfrac{27a^2}{c\left(c^2+9a^2\right)}+\dfrac{b^2}{a\left(4a^2+b^2\right)}+\dfrac{8c^3}{b\left(9b^2+4c^2\right)}\ge\dfrac{3}{2}\)
Cho các số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}.\)
Cho ba số thực dương a,b,c thỏa mãn . Chứng mình rằng:
\(\left(a+b+c\right)+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+\dfrac{8}{abc}\ge\dfrac{121}{12}\)
Cho các số thực dương a,b,c thỏa mãn điều kiện abc=1. Chứng minh rằng\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{2}\)
Cho ba số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng:
\(\left(a^2+b^2+c^2\right)^3\ge9\left(a+b+c\right)\)
Cho a , b , c là các số thực dương thỏa mãn a + b + c = 1 Chứng minh rằng :
\(\frac{a}{1+9bc+4\left(b-c\right)^2}+\frac{b}{1+9ca+4\left(c-a\right)^2}+\frac{c}{1+9ab+4\left(a-b\right)^2}\ge\frac{1}{2}\)