GT <=> 2(a^2+b^2+c^2+d^2+e^2)-2(ab+ac+ad+ae)>=0
<=> a^2-2a(d+e)+(d+e)^2 - 2de+d^2+e^2+a^2-2a(b+c)+(b+c)^2-2bc+b^2+c^2>=0
<=> (a-d-e)^2 +(d-e)^2+(a-b-c)^2 + (b-c)^2>=0 (đúng)
=> bdt9 đúng
GT <=> 2(a^2+b^2+c^2+d^2+e^2)-2(ab+ac+ad+ae)>=0
<=> a^2-2a(d+e)+(d+e)^2 - 2de+d^2+e^2+a^2-2a(b+c)+(b+c)^2-2bc+b^2+c^2>=0
<=> (a-d-e)^2 +(d-e)^2+(a-b-c)^2 + (b-c)^2>=0 (đúng)
=> bdt9 đúng
Chứng minh rằng: a2+b2+c2+d2+e2≥a(b+c+d+e).
CMR a2+b2+c2+d2+e2≥a(b+c+d+e)
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
Cho các số thực a, b, c, d thỏa điều kiện a2 + b2 + c2 + d2 = 2017. Tìm giá trị nghỏ nhất của biểu thức P = (45 + a)(45 + b) - cd
gọi S là diện tích tứ giác ABCD có độ dài các cạnh là a,b,c,d .
Chứng minh rằng : S ≤( a2+b2+c2+d2 )/4
cho a, b, c là các số thực. Chứng minh rằng: a2 + b2 + c2 ≥ 2ab - 2bc +2ca
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8
Tìm a,b,c,d thỏa mãn
a2+b2+c2+d2+1=a×(b+c+d+1)
Cho: a2+b2+(a-b)2 =c2+d2+(c-d)2
CMR: a4+b4+(a-b)4=c4+d4+(c-d)4
Help me!Tks!
Chứng minh các hằng đẳng thức sau:
a) (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
b) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)