cho a,b,c là 3 số thực dương thỏa mãn điều kiện a+b+c+\(\sqrt{abc}\)=4.
tính giá trị của biểu thức: A=\(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Cho các số a,b,c thỏa mãn điều kiện: a+b+c=ab+bc+ca=0.Tính giá trị của biểu thức:\(Q=\left(a-1\right)^3+\left(b+1\right)^8+\left(c-1\right)^{2000}\)
cho a,b,c là các số dương thỏa mãn điều kiện a + b + c = 1
Tìm giá trị nhỏ nhất của biểu thức A = \(\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Cho a, b, c là các số dương thỏa mãn điều kiện a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
cho 3 số thực a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức sau
\(P=\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\left(2+c\right)\left(3+a+b\right)\)
Cho \(a,b,c\)là các số thực dương thỏa mãn điều kiện \(a+b+c+\sqrt{abc}=4\)
Tính giá trị của biểu thức :\(\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\left(5a+\frac{2}{b+c}\right)^3+\left(5b+\frac{2}{c+a}\right)^3+\left(5c+\frac{2}{a+b}\right)^3\)
trong đó a,b,c là số thực dương thỏa mãn điều kiện \(a^2+b^2+c^2=3\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức : \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)