Cho các số thực dương a, b với a≠1 và log a b >0. Khẳng định nào sau đây là đúng?
A. 0 < a , b < 1 0 < a < 1 < b
B. 0 < a , b < 1 1 < a , b
C. 0 < a , b < 1 0 < b < 1 < a
D. 0 < b < 1 < a 1 < a , b
Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
Cho log 2 = a , log 3 = b . Biểu diễn log 625 270 theo a và b là:
A. 1 4 3 b + 1 1 - a
B. a + 2 b 2 3 a 1 - b
C. a + b 2 4 a 1 - b
D. a + b 2 2 a 1 - b
Giả sử a,b là các số thực sao cho x 3 + y 3 = a 10 3 x + b 10 2 x đúng với mọi các số thực dương x, y, z thỏa mãn log ( x + y ) = z và log ( x 2 + y 2 ) = z + 1 . Giá trị của a+b bằng
A. -31/2
B. -25/2
C. 31/2
D. 29/2
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Cho các số thực dương a,b thỏa mãn log a = x , log b = y . Tính l o g ( a 2 b 3 ) ?
A. 6xy
B. x 3 y 3
C. x 3 + y 3
D. 2x+3y
rút gọn biểu thức sau
\(\left(log_a^b+log^a_b+2\right)\left(log_a^b-log^a_{ba}\right)log^a_b-1\)
Đặt a = log 2 5 , b = log 3 5 . Hãy biểu diễn log 6 5 theo a và b.
A. log 6 5 = 1 a + b
B. log 6 5 = a b a + b
C. log 6 5 = a 2 + b 2
D. log 6 5 = a + b
Cho a = log 2 7 , b = log 5 7 . Giá trị của log 7 bằng
A. a b a + b
B. 1 a + b
C. a + b
D. a + b a b
Xét hàm số f ( x ) = a ln x 2 + x 2 + 1 + b sin 4 x + c . 10 x Với a, b, c là những hằng số. Biết f ( log log e ) + f ( log ( ln 10 ) ) = 4 Giá trị của c nằm trong khoảng nào?
A . 1 ; 3 2
B . 0 ; 1
C . 3 2 ; 2
D . ( 2 ; 3 )