Có: \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta được:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+b+a}\)
\(=\dfrac{a+b+c}{a+b+c}\)
Xét: a + b + c = 0 \(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)(1)
Thay (1) vào A, ta có:
\(A=\dfrac{-c.\left(-a\right).\left(-b\right)}{abc}=-1\)
Xét a + b + c ≠ 0:
\(\Rightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=1\)
\(\Rightarrow\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1=1\)
\(\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)(2)
Thay (2) vào A, ta có:
\(A=\dfrac{2c.2a.2b}{abc}=8\)
Vậy...