#)Giải :
Ta có : \(P=a^4+b^4+2-2-ab\)
Áp dụng BĐT cô si, ta có :
\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1
\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1
Khi đó \(P\ge2a^2+2b^2-2-ab\)
\(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)
\(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)
Mặt khác \(a^2+b^2\ge2ab\)
Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)
\(\Rightarrow ab\le1\)(2)
Từ (1) và (2)
Ta có : \(P\ge4-3ab\ge4-3=1\)
Vậy P đạt GTNN là 1 khi a = b = 1
#~Will~be~Pens~#