Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Nho Bảo Trí

Cho biểu thức P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\)

a) Tìm điều kiện xác định của P 

B) Rút gọn P 

👁💧👄💧👁
12 tháng 8 2021 lúc 22:38

a) ĐKXĐ: \(x\ge0;x\ne1\)

b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

Nguyễn Nho Bảo Trí
12 tháng 8 2021 lúc 22:33

Giúp mình với

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 22:50

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\)

\(=\dfrac{-2\sqrt{x}}{2\left(\sqrt{x}-1\right)}=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)


Các câu hỏi tương tự
luffy monkey
Xem chi tiết
Chau Pham
Xem chi tiết
Nguyễn Thị Thu
Xem chi tiết
Liên Phạm Thị
Xem chi tiết
Trần Mun
Xem chi tiết
manh
Xem chi tiết
Đặng Bích Ngọc
Xem chi tiết
Frienke De Jong
Xem chi tiết
Linh Nguyễn Diệu
Xem chi tiết