a:
Thay \(a=3+2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)
b: Để A=a-1 thì \(a\sqrt{a}-\sqrt{a}-a+1=0\)
\(\Leftrightarrow\left(a-1\right)\left(\sqrt{a}-1\right)=0\)
hay \(a\in\varnothing\)
a:
Thay \(a=3+2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)
b: Để A=a-1 thì \(a\sqrt{a}-\sqrt{a}-a+1=0\)
\(\Leftrightarrow\left(a-1\right)\left(\sqrt{a}-1\right)=0\)
hay \(a\in\varnothing\)
Cho biểu thức A= \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
Rút gọn được \(\frac{a-1}{\sqrt{a}}\)
a, Tính giá trị của A khi a= 2\(\sqrt{2}+3\)
b, Tìm a để A = a-2
cho biểu thức \(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{\sqrt{a}}\right):\left(\frac{2a+\sqrt{a}-1}{1-a}+\frac{2a\sqrt{a}+a-\sqrt{a}}{1+a\sqrt{a}}\right)\)
a. rút gọn P KQ=\(\frac{1-\sqrt{a}+a}{\sqrt{a}}\)
b. tính P khi \(a=\frac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13-\sqrt{48}}}}}+1\) KQ =7/3
c. tìm x để P>x
lm hooj t câu c vs câu a,b, t lm hết r
Cho biểu thức
A= \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a, Rút gọn A
b, Tìm a để A<0
c, Tìm a để A=-2
1) A=\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
a. Rút gọn A b. Tìm a để A=7 c. Tìm a để A>6
2) A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a. Rút gọn A b. tìm x để A<0
3)\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a. Rút gọn A b. Tìm a để A=2 c. Tìm giá trị nhỏ nhất của A
GIÚP MÌNH ĐI MẤY PẠN !!! THKS NHÌU
Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{11}{x+\sqrt{x}+1}-\frac{34}{1-x\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\)
a)Tìm điều kiện của x để P xác định, rút gọn P?
b) tính giá trị của P khi \(x=3-2\sqrt{2}\)
c)tìm giá trị nhỏ nhất của biểu thức P? Giá trị đó đạt được khi x bằng bao nhiêu?
Cho biểu thức
A= \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, Rút gon A
b, Tìm a để A> \(\frac{1}{6}\)
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
Cho biểu thức: P= \(\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)\times\frac{a+2}{a-2}\) đk: a>0 , a\(\ne\)1, a\(\ne\) 2
a) Rút gọn P
b) Tìm giá trị nguyên của a để P nguyên
a. Rút gọn biểu thức \(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(1+a^2\right)}}\)
b. Tính giá trị của tổng \(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
Cảm ơn mọi người nhiều