`a, Đk: x ne +-2, 0`.
`A = (x - 2 + x + 2)/(x^2 - 4) . (x-2)/x`
`= (2x(x-2))/((x-2)(x+2)x)`
`= 2/(x+2)`.
`b, A > 1/2 -> 4 > x + 2`
`-> x < 2`.
`c, A in ZZ -> 2/(x+2) in ZZ -> 2 vdots x + 2`
`-> x + 2 in Ư(2)`
`-> x = {-1, -3, 0, -4}`.
đk x ≠ 0; x ≠ 2
\(A=\left(\dfrac{x-2+x+2}{x-4}\right).\dfrac{x-2}{x}\\ =\dfrac{2x}{x+2}.\dfrac{1}{x}\\ =\dfrac{2}{x+2}\)
b, Để
\(A>\dfrac{1}{2}\\ \dfrac{2}{x+2}>\dfrac{1}{2}\\ 4>x+2\\ x< 2\\ KHvsđk\\ =>x< 2;x\ne2;x\ne0\)
c, Để A nguyên
\(x+2\inƯ\left(2\right)=>Ư\left(2\right)=\left\{1;-1;2;-2\right\}\\ =>x=\left\{-1;-3;0;-4\right\}\)
Lại có \(x\ne0\)
=> \(x=\left\{-1;-3;-4\right\}\)