a:
ĐKXĐ của P là \(x\notin\left\{1;-1;-\dfrac{1}{2}\right\}\)
\(P=A\cdot B=\dfrac{x\left(x-1\right)}{2x+1}\cdot\left(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\right)\)
\(=\dfrac{x\left(x-1\right)}{2x+1}\cdot\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x}{x+1}\cdot\dfrac{2x+1}{2x+1}=\dfrac{x}{x+1}\)
b: Đặt C=3P
\(=3\cdot\dfrac{x}{x+1}=\dfrac{3x}{x+1}\)
Để C là số nguyên thì \(3x⋮x+1\)
=>\(3x+3-3⋮x+1\)
=>\(-3⋮x+1\)
=>\(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)