\(a^2+2ab+b^2+4a+4b+2015\\ =\left(a+b\right)^2+4\left(a+b\right)+2015\\ =\left(a+b\right)\left(a+b+4\right)+2015\\ =1.\left(1+4\right)+2015\\ =5+2015\\ =2020\)
\(A=\left(a+b\right)^2+4\left(a+b\right)+2015=2020\)
\(a^2+2ab+b^2+4a+4b+2015\\ =\left(a+b\right)^2+4\left(a+b\right)+2015\\ =\left(a+b\right)\left(a+b+4\right)+2015\\ =1.\left(1+4\right)+2015\\ =5+2015\\ =2020\)
\(A=\left(a+b\right)^2+4\left(a+b\right)+2015=2020\)
Chứng tỏ rằng biểu thức sau luôn dương với mọi giá trị của a ,b
a^2+2ab+b^2-4a-4b+5
Cho biểu thức sau:
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
a, Rút gọn biểu thức P
b, Tính giá trị của P khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
M=(2/2a-b + 6b/b^2 - 4a^2 - 4/2a+b) : (1+ 4a^2+4b^2/4a^2-b^2)
a) Rút gọn biểu thức M
b) Tính giá trị biểu thức M khi a=1/3 và b=2
cho a b c là 3 số khác 0 thỏa mãn a^2 + 4b^2 + 9c^2 = 108.
Tìm giá trị nhỏ nhất của biểu thức P = 2ab - 6bc + 3ac
(Giúp mình với)
Tính giá trị biểu thức
A =5ab - b^2/4a^2-ab
tại a^2-5ab+4b^2
cho a>b>0 và a^2-6b^2=ab. Tính giá trị biểu thức : A=(2ab)/(a^2-7b^2). Tính giá trị biểu thức : A=(2ab)/(a^2-7b^2)
Cho biết a - b =7.Tính giá trị biểu thức:
a(a+2)+b(b-2)-2ab
cho\(a^3-4a^2b=2b^3-5ab^2\) giá trị của biểu thức P=\(\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\)
cho biết a-b=7 tính giá trị của biểu thức a(a+b) + b ( b-2 ) - 2ab