cho tam giác ABC .qua A kẻ đường thẳng song song với BC.qua C kẻ đường thẳng song song với AB.2 ĐƯỜNG THẲNG NÀY CẮT NHAU TẠI D.
a)AD=BC
b)M,N là trung điểm của BC,AD.chứng minh AM=CN
c)O là giao điểm của AC ,BD.chứng minh OA=OC,OB=OD
d)chứng minh M,N,O thẳng hàng
Cho hai đường thẳng a, b cố định, song song với nhau và khoảng cách giữa chúng bằng 4. Hai mặt phẳng P , Q thay đổi vuông góc với nhau lần lượt chứa hai đường thẳng a, b. Gọi d là giao tuyến của P , Q . Khẳng định nào sau đây là đúng?
A. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 4
B. d thuộc 1 mặt nón cố định
C. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2 2
D. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2
Cho hai mặt phẳng P , Q cắt nhau theo giao tuyến là đường thẳng d . Đường thẳng a song song với cả hai mặt phẳng P , Q . Khẳng định nào sau đây đúng?
A. a , d trùng nhau
B. a , d chéo nhau
C. a song song d
D. a , d cắt nhau
Cho hai đường thẳng a, b cố định, song song với nhau và khoảng cách giữa chúng bằng 4. Hai mặt phẳng (P), (Q) thay đổi vuông góc gới nhau lần lượt chứa hai đường thẳng a, b. Gọi d là giao tuyến của (P), (Q). Khẳng định nào sau đây là đúng?
A. d thuộc một mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 4
B. d thuộc một mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 22
C. d thuộc một mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2
D. d thuộc một mặt nón cố định
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x - 1 1 = y - 1 2 = z - 1 1 ; d 2 : x 1 = y + 1 2 = z - 6 - 5 . gọi A là giao điểm của d 1 v à d 2 ; d là đường thẳng qua điểm M (2; 3;1) cắt d 1 , d 2 lần lượt tại B, C sao cho B C = 6 A B . Tính khoảng cách từ O đến đường thẳng d, biết rằng d không song song với mặt phẳng (Oxz)
A. 10 5
B. 10 3
C. 13
D. 10
Trong không gian Oxyz, cho các điểm A(6;0;0),B(0;3;0) và mặt phẳng (P):x-2y+2z=0. Gọi d là đường thẳng đi qua M(2;2;0), song song với (P) và tổng khoảng cách từ A,B đến đường thẳng d đạt giá trị nhỏ nhất. Véctơ nào dưới đây là một véctơ chỉ phương của d
A. u 1 → ( - 10 ; 3 ; 8 )
B. u 2 → ( 14 ; - 1 ; - 8 )
C. u 3 → ( 22 ; 3 ; - 8 )
D. u 4 → ( - 18 ; - 1 ; 8 )
Cho đường thẳng d: 2x - y + 10 =0 và điểm M(1; -3)
a) Tính khoảng cách từ điểm M đến đường thẳng d
b) Viết pt đường thẳng đi qua M và vuông góc với đường thẳng d
c) Viết pt tiếp tuyến với đường tròn (C): (x-2)2 + (y-3)2 =9 biết rằng tiếp tuyến đó song song với đường thẳng d
d) Cho ∆ABC biết tọa độ trực tâm H(2;2). Tâm đường tròn ngoại tiếp ∆ABC là điểm I(1;2). Xác định tọa độ các điểm A, B, C biết trung điểm của BC là điểm M(1;1) và hoành độ điểm B âm
cho hình thang ABCD có đáy nhỏ CD. Đường thẳng đi qua điểm D song song BC cắt AC tại M và AB tại K. Đường thẳng đi qua C song song AD cắt AB tại F. Qua F vẽ đường thẳng song song AC cắt BC tại P. Chứng minh:
a, MP // AB
b, 3 điểm MP, CF, DB đồng quy
Cho tam giác ABC có hai đỉnh B, C cố định BC = 2a và đỉnh A thay đổi. Qua B dựng đường thẳng d vuông góc với BC, d cắt đường trung tuyến AI của tam giác ABC tại K. Gọi H là trực tâm của tam giác ABC, biết rằng IH song song với KC. Tìm quỹ tích điểm A là
A. Đường thẳng x+2y+4a=0
D. Parabôn y=2ax2