Cho (O) đường kính AC, trên đoạn OC lấy điểm B và vẽ đường tròn tâm O', đường kính BC. Gọi M là trung điểm của đoạn AB. Từ M vẽ dây cung DE vuông góc với AB, DC cắt đường tròn tâm O' tại I
a) Tứ giác ADBE là hình gì ?
b) Chứng minh DMBI nội tiếp
c) Chứng minh B, I, C thẳng hàng và MI = MD
d) Chứng minh MC.DB = MI. DC
e) Chứng minh MI là tiếp tuyến của (O')
1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.
a) Chứng minh tam giác ACE vuông cân
b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?
c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng
Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:
a) Góc BED = góc DAE
b) DE2 = DA.DB
Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD
Cho đường tròn (o) và điểm K thuộc (O). Vẽ đường tròn tâm K cắt (O) tại C,D. Vẽ dây AB của (K) vương góc với bán kính KC, B nằm trong (O). CB cắt (O) tại điểm thứ hai là E.qua E vẽ đường thẳng song song với ac, cắt AB tại G. Chứng minh tam giác CDG vuông
Cho đ. tròn tâm O, đ. kính AC. Trên đoạn OA lấy điểm B, vẽ đ. tròn tâm O', đ. kính BC. Gọi E là trung điểm của AB. Từ E vẽ dây MN vuông góc với AC, dây CM cắt đ. tròn tâm O' tại P
a. Tứ giác AMBN là hình gì?
b. chứng minh PB // AM
c. chứng minh PBN thẳng hàng
d. chứng minh EP là tiếp tuyến của đ. tròn tâm O'
Cho đường tròn (O,R) và điểm A ở ngoài đường tròn với OA>2R. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B,C là tiếp điểm). Vẽ dây BE của đường tròn (O) song song với AC;AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của đoạn DE.
a) Chứng minh: A,B,C,O,M cùng thuộc một đường tròn và SC^2=SB.SD
b) Tia BM cắt (O) tại K khác B. Chứng minh: CK song song với DE.
c) Chứng minh tứ giác MKCD là một hình bình hành.
d) Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H.
Chứng minh: Ba điểm H, O, C thẳng hàng.
Cho tứ giác ABCD nội tiếp đường tròn (O; R) đường kính BD (AD > AB). Đường thẳng qua A vuông góc với BD tại N, cắt đường tròn (O) tại M. Dây cung BC cắt dây cung AM tại I.
a) Chứng minh rằng: Tứ giác NICD nội tiếp
b) Chứng minh BN.BD = BI.BC
c) Qua N kẻ đường thẳng song song với AC, cắt dây cung BC tại P. Đường thẳng NP cắt đường thẳng DC tại Q. Chứng minh tứ giác MPCQ là hình chữ nhật.
Cho điểm C nằm trên nửa đường tròn (O,R), đường kính AB sao cho cung AC lớn hơn cung BC ( C khác B ). Đường thẳng vuông góc với đường kính AB tại O cắt dây AC tại D
a) Chứng minh tứ giác BCDO nội tiếp
b) Chứng minh AD.AC=AO.AB
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng đi qua D và song song với AB tại điểm E. Tứ giác OEDA là hình gì?
d) Gọi H là hình chiếu của C trên AB. Hãy tìm vị trí điểm C để HD\(\perp\)AC
Cho đường tròn tâm O đường kính AB. Vẽ hai dây AM và BN song song với nhau sao cho sđ B M ⏜ < 90°. Vẽ dây MD song song với AB. Dây DN cắt AB tại E. Từ R vẽ một đường thẳng song song với AM cắt đường thẳng DM tại C. Chứng minh:
a, AB ⊥ DN
b, BC là tiếp tuyến của đường tròn (O)
Giúp mình câu c với
Cho đường tròn (O, R). Từ điểm A nằm ngoài (O) kẻ hai tiếp truyến AB, AC với (O). kẻ dây BE của (O) song song với OD, kẻ bán kính OF vuông góc với CD. Chứng minh C, O, E thẳng hàng và EF là tia phân giác của góc CED.
c, Vẽ đường tròn (A, AD). Gọi I, J lần lượt là giao điểm của đường thẳng ED và FD với đường tròn (A, AD) (I, J khác D). Chứng minh rằng góc CEF= góc JID
d, Tính độ dài đoạn thẳng AO theo R để tứ giác EFIJ là hình bình hành.