Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hello7156

Cho \(a,b,c\ge0\) và a+b+c =1. Tìm GTNN của biểu thức:

S= \(\dfrac{a}{\sqrt{b}+\sqrt{c}}+\dfrac{b}{\sqrt{a}+\sqrt{c}}+\dfrac{c}{\sqrt{a}+\sqrt{b}}\)

Nguyễn Việt Lâm
18 tháng 1 2022 lúc 12:39

Ta có:

\(S=\dfrac{a^2}{a\left(\sqrt{b}+\sqrt{c}\right)}+\dfrac{b^2}{b\left(\sqrt{c}+\sqrt{a}\right)}+\dfrac{c^2}{c\left(\sqrt{a}+\sqrt{b}\right)}\ge\dfrac{\left(a+b+c\right)^2}{a\left(\sqrt{b}+\sqrt{c}\right)+b\left(\sqrt{c}+\sqrt{a}\right)+c\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(b+c\right)+\sqrt{b}\left(c+a\right)+\sqrt{c}\left(a+b\right)}\)

Mặt khác:

\(\sqrt{a}\left(b+c\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a.\left(b+c\right)\left(b+c\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{2a+2b+2c}{3}\right)^3}=\dfrac{2\sqrt{3}}{9}\)

\(\Rightarrow S\ge\dfrac{1}{3.\dfrac{2\sqrt{3}}{9}}=\dfrac{\sqrt{3}}{2}\)


Các câu hỏi tương tự
Nguyễn An
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lil Shroud
Xem chi tiết
Thành Nam
Xem chi tiết