\(\left(1+2\sqrt[3]{abc}\right)^3\) mới đúng chứ nhở?
\(\left(1+2\sqrt[3]{abc}\right)^3\) mới đúng chứ nhở?
cho a,b,c>0 và a+b+c=1
chứng minh \(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{1}{2}\)
cho a,b,c >0; abc=1.chứng minh
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Cho a,b,c>0. Chứng minh rằng:
\(\frac{b^3}{a^2\left(a^3+2b^3\right)}+\frac{c^3}{b^2\left(b^3+2c^3\right)}+\frac{a^3}{c^2\left(c^3+2a^3\right)}\ge\frac{1}{3}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\).
\(\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
cm bđt bs abc=1
Chứng minh
1.\(\frac{h_a}{h_b}=\frac{sinA}{sinB}\)
2.\(cotA+cotB+cotC\ge\sqrt{3}\)
3.\(\left(b^2-c^2\right)cosA=a\left(c.cosC-b.cosB\right)\)
4.\(a^2=b^2+c^2-4S.cotA\)
5.\(a^2+b^2\ge\frac{4S}{sinC}\)
Chứng minh BĐT luôn đúng với mọi a,b,c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
cho a,b,c >0 chứng minh
\(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{2a+3b}\ge\frac{3}{5}\)
Giải các bất phương trình sau :
a) 6/x-2 ≥ x - 1
b) √x+1 + 1 - 2x ≤ 0
cho các số thực dương a,b,c thỏa mãn a+b+c≥3.
tìm minP=\(\frac{a^2+4a+1}{a^2+a}+\frac{b^2+4b+1}{b^2+b}+\frac{c^2+4c+1}{c^2+c}\)