cho a3+b3=2(c3-8d3); a,b,c,d ∈Z. CM a+b+c+d chia hết cho 3
Cho các số nguyên a, b, c, d thỏa mãn a3+b3=5(c3+7d3). CMR a+b+c+d chia hết cho 6
cho a,b,c,d thuộc Z thỏa mãn a^3+b^3=2(c^3-8d^3). chứng minh rằng a+b+c+d chia hết cho 3
Cho a+b+c+d=0. Chứng minh rằng :
a3+b3+c3+d3=3(b+c)(ad-bc)
a) Cho hai số dương thỏa mãn điều kiện a - b = a3 + b3. Chứng minh rằng a2 + b2 < 1.
b) Cho a, b, c, d thuộc Z thỏa mãn a3 + b3 = 2(c3 - 8d3). Chứng minh rằng a + b + c + d chia hết cho 3.
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
cho a ,b ,c dương abc=1. Chứng minh (1/a3(b+c)) +(1/b3(a+c)) +(1/c3(a+b)) >=3/2
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5