Sửa đề \("="\rightarrow"+"\)
Áp dụng BĐT cauchy, ta có:\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ca+a+1}\right)\\ \Leftrightarrow\sum\dfrac{1}{a^2+2b^2+3}\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab^2c+abc+ab}+\dfrac{b}{abc+ab+b}\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow a=b=c=1\)