Cho tam giác ABC nội tiếp (O)
a) phân giác góc ABC và góc ACB cắt (O) tại D,E. DE cắt AB,AC tại F,G. c/m tam giác AFG cân
b) HẠ AH vuông góc BC. Đường vuông góc với BC dựng từ B cắt đường vuông góc với AH dựng từ A tại K. Tính AB,AC,CK. Biết BC =3a. AK=a, AH= \(a\sqrt{3}\)
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Cm OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) cm EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho A nằm trên đường tròn (O) đường kính BC, phân giác của góc BAC cắt BC tại D và cắt đường tròn (O) tại M, AH là đường cao của tam giác ABC.
a) Chứng minh OM vuông góc BC và MB2= MA.MD
b) Phân giác của góc ABC cắt AH tại E; cắt AM tại I; cắt AC tại F và cắt (O) tại N, cm MA = MB = MC.
c) chứng minh EA.FA = EH.FC
d) Qua I kẻ IP vuông góc AB tại P, IP cắt BC tại K, chứng minh N, K, M thẳng hàng.
Cho tam giác ABC vuông tại A , có AH là đường cao , AC = 15 cm, AB = 20 cm .
a) Tính độ dài BC , AH , số đo góc ACB
b) Từ C vẽ tia Cx vuông góc CB , tia Cx cắt tia BA tại E .
Chứng minh : AE.AB = CH.BC = BC2 - AB2
c) Gọi K là trung điểm AH , tia BK cắt CE tại M.
Chứng minh : ME = MC
Cho tam giác ABC vuồn tại A và đường cao AH biết AB=15 cm, BC=25cm.
a) Tính AH, BH
b) Từ B vẽ ddouot vuông góc BC cắt AC tại D. Vẽ tia ohaan giác góc C cắt AB, DB lần lượt tại M, N. CM: CN.CD= CM.CB
c) Gọi O là giao điểm của CD và AH. CM: Tam giác OAN cân
Đề 1:
Cho tam giác ABC vuông tại A có AB = 30cm, đường cao AH = 24cm.
a) Tính BH, BC, AC.
b) Đường thẳng vuông góc với AB tại B cắt tia AH tại D. Tính BD
Đề 2:
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 15cm, BH = 9cm.
a) Tính AC, BC, và đường cao AH.
b) Gọi M là trung điểm của BC, tính diện tích của tam giác AHM.
3: Cho tam giác ABC vuông tại A, đường cao AH. Đường phân giác trong góc B cắt AH, AC lần lượt tại E và F. Đường phân
giác trong góc C cắt AH, AB lần lượt tại K và L. M và N lần lượt là trung điểm của EF và KL. Chứng minh MN // BC
Cho tam giác ABC có 3 góc nhọn. Đường tròn tâm O đường kính BC cắt AB tại E, cắt AC tại F. Các tia BF cắt CE cắt nhau tại H. CMR:
a) AH vuông góc với BC
b) Gọi K là giao điểm của AH và BC. CMR: FB là phân giác của góc EFK
c) Gọi M là trung điểm của BH. CMR: tứ giác EMKF nt
Cho tam giác ABC vuông tại A đường cao AH. Biết AH=a, AB=2AC a)tính các cạnh của tam giác theo a b) Cho M là trung điểm BC. Tính MH, AM c) Kẻ đường thẳng vuông góc với AM tại M, cắt AB, AC tại E, F. Tính AE, AF
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF