Cho a;b;c là các số nguyên dương thỏa mãn : \(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\). Chứng minh c là số chính phương
Cho a, b, c là các số nguyên dương sao cho c(ac+1)2=(2c+b)(3c+b). CMR c là số chính phương.
cho a b c thuộc N thỏa mãn ab+ac+bc=1
Chứng minh (a2+1)(b2+1)(c2+1)là chính phương
cho a,b,c thỏa mãn 2a+b,2b+c,2c+a là số chính phương.biết một trong ba số chính phương ấy chia hết cho 3 chứng minh rằng (a-b)^3+(b-c)^3+(c-a)^3 chia hết cho 81
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
cho a,b,c thuộc Z và a+b+c=1.
Chứng minh rằng: (a+bc)(b+ac)(c+ab) là số chính phương.
bài 3 : với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3 =24+(3a+b-c)+(3b+c-a)^3 +(3c+a-b)^3
CM : (a+2b)(b+2c)(c+2a)=1
bài 4 : CM với n là số nguyên dương thì : 5^n(5^n+3^n)-2^n(9^n+11^n) chia hết cho 21
Cho các số nguyên a, b, c thỏa mãn ab+ac+bc=1. Chứng minh \(S=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)là số chính phương