Do 0 < a,b,c < 1 nên (a - 1)(b - 1)(c - 1) < 0
hay abc < ab + bc + ca - (a + b + c) + 1 = ab + bc + ca - 1
suy ra:a2 + b2 + c2 + 2abc < a2 + b2 + c2 + 2(ab + bc + ca - 1) = (a + b + c)2 - 2 = 22 - 2 = 2
a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²
tương tự: bc+ab > b²; ca+bc > c²
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)
g thiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}
=> 2 > a²+b²+c² (đpcm)