bất đẳng thức trên tương đương: \(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\ge6abc\)
Theo Cô-si: \(VT\ge6\sqrt[6]{\left(a^2b\right).\left(ab^2\right).\left(b^2c\right).\left(bc^2\right).\left(c^2a\right).\left(ca^2\right)}=6abc\)
Dấu "=' xảy ra khi a=b=c
\(VT=\frac{b^2c^2}{bc\left(a^2+ab+bc+ca\right)}+\frac{c^2a^2}{ca\left(b^2+ab+bc+ca\right)}+\frac{a^2b^2}{ab\left(c^2+ab+bc+ca\right)}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ TA ĐƯỢC:
=> \(VT\ge\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\)
TA SẼ CHỨNG MINH: \(\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\ge\frac{3}{4}\)
<=> \(4\left(ab+bc+ca\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=> \(4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=. \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
MÀ ĐÂY LẠI LÀ 1 BĐT LUÔN ĐÚNG !!!!!
=> VẬY TA CÓ ĐPCM.
DẤU "=" XẢY RA <=> \(a=b=c\)