Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{MAB}=\widehat{MAC}\)
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M
Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{MAB}=\widehat{MAC}\)
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M
cho tam giác abc cân tại A. Kẻ AH vuông góc BC9 HϵBC, Trên tia AH lấy E sao cho H là trung điểm của AE. Trên tia đối của tia CB lấy điểm F sao cho CF=BC. gọi m là trung điểm của EF
a)chứng minh tam giác abc= ahc
b)chứng minh acm thẳng hàng
Cho tam giác ABC cân tại A,M là trung điểm của BC. a) chứng minh: tam giác ABC = tâm giác ACM. b) trên tia đổi của tia MA lấy điểm D sao cho MD=MA. Chứng minh: CD//AB. c) gọi I là trung điểm của AC. Trên tia đổi của tia IB lấy điểm E sao cho IE=IB. Chứng minh: ba điểm D,C,E thẳng hàng và C là trung điểm của DE. Giúp mình
Cho ∆ABC cân tại A , điểm M là trung điểm của cạnh BC . Chứng minh : ∆ABM = ∆ACM , cạnh AMB = AMC
Cho tam giác ABC cân tại A. lấy điểm D thuộc AB, E thuộc AC sao cho AD = AE. Gọi M là trung điểm của BC
a/ Chứng minh tam giác ABM = tam giác ACM
b/ Chứng minh DE song song BC
c/ Chứng minh AM là đường trung trực của BC
Bài 17: Cho tam giác ABC cân tại A. Gọi M là trung điểm BC.
a, Chứng minh \(\Delta\) ABM =\(\Delta\) ACM
b, Chứng minh AM là phân giác góc BAC và AM vuông góc BC.
c, Lấy E bất kì trên đoạn AM. Chứng minh tam giác EBC cân.
Cho tam giác ABC cân tại A có M là trung điểm của cạnh BC. Chứng minh rằng tam giác ABM = tam giác ACM
Cho tam giác ABC cân tại A biết M là trung điểm của bc A, chứng minh tam giác ABM bằng tam giác acm B, trên tia đối của tia ma lấy điểm B sao cho MD = ma chứng minh AC song song với BD C ,vẽ tia Ax song song với BC ( tia Ax và điểm B cùng phía đối với đường thẳng ac đối vs đg thẳng AC)lấy điểm K thuộc tia Ax sao cho AK = B C .Chứng minh ba điểm K B D thẳng
Cho tam giác ABC cân tại A, lấy điểm H là trung điểm của đoạn thẳng BC.
a) chứng minh tam giác ABH = tam giác ACH.
b) tia phân giác của góc ABC cắt đoạn AB tại M, chứng minh góc ABM =góc ACM và tam giác MBC cân.
c) đường thẳng đi qua A và song song với BC cắt tia BM tại N. Chứng minh AB = AN.
d) chứng minh MC vuông góc CN
Cho🔺ABC cân tại A . Gọi M là trung điểm của cạnh BC
a) Chứng minh : 🔺ABM = 🔺ACM
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC . Chứng minh BH = CK
c) Từ B lấy BP vuông góc AC , BP cắt MH tại I . Chứng minh 🔺IBM cân
Bài 5: Cho tam giác ABC vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho 2 góc ABN=ACM =15°. Gọi I là giao điểm của MC và NB. Gọi H, E, D lần lượt là trung điểm của BC, BN,СМ.
a) So sánh 2 tam giác ABN và ACM ;
b) Chứng minh Tam giác ADE đều
c) Chứng minh ba điểm A, I, H thẳng hàng;
d) Tính: góc DHE