Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Minh Trương

Cho ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB và AC. a) Chứng minh MN là đường trung bình của ∆ABC. Từ đó suy ra tứ giác BMNC là hình thang cân. (1 điểm) b) Gọi AP là đường trung tuyến của ∆ABC; Q là điểm đối xứng với A qua P và K là giao điểm của BN và AP. Chứng minh tứ giác ABQC là hình bình hành và AQ = 3AK. (1 điểm)

BuBu siêu moe 방탄소년단
5 tháng 11 2021 lúc 14:38

a) \(\Delta ABC\) có: M là trung điểm AB (gt)
                         N là trung điểm AC (gt)
                \(\Rightarrow MN\) là đường trung bình \(\Delta ABC\)
                \(\Rightarrow MN\)//\(BC\)
Tứ giác BMNC có: MN//BC (cmt), \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
                         \(\Rightarrow BMNC\) là hình thang cân (đpcm)
b) AP là đường trung tuyến \(\Delta ABC\) (gt) nên P là trung điểm BC
A và Q đối xứng nhau qua P (gt) nên P là trung điểm AQ
Tứ giác ABQC có: BC và AQ là 2 đường chéo giao nhau tại P
                        mà P là trung điểm BC
                              P là trung điểm AQ
                     \(\Rightarrow ABQC\) là hình bình hành (đpcm)


Các câu hỏi tương tự
Hải Đăng
Xem chi tiết
Tuyết Ly
Xem chi tiết
oanh nguyen
Xem chi tiết
Hân Nguyễn
Xem chi tiết
Huỳnh Thư Linh
Xem chi tiết
Nguyễn Khánh Trang
Xem chi tiết
Linh Dan Nguyen
Xem chi tiết
Linh Dan Nguyen
Xem chi tiết
Hienmino
Xem chi tiết