Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Không Tên

Cho a,b,c > 0.  CMR:

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}}\)

tth_new
3 tháng 9 2019 lúc 8:13

Ta có: \(LHS\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}}\) (Cô si + nhân cả tử và mẫu với 3(a+b+c)  )

Mặt khác áp dụng BĐT quen thuộc \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

với x = ab; y = bc; z = ca thu được: \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

Từ đó: \(LHS\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}}\)

\(\ge3\sqrt[3]{\frac{3\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}}=RHS\)(qed)


Các câu hỏi tương tự
Vũ Đức
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phạm Hồ Thanh Quang
Xem chi tiết
syl tráo nọy lguơì
Xem chi tiết
Chỉ Yêu Mình Em
Xem chi tiết
lý canh hy
Xem chi tiết