\(\left(a+b\right)^2=4^2\Leftrightarrow a^2+2ab+b^2=16\Leftrightarrow a^2+b^2=4-2ab=16-2.1=14\)
Vậy, \(M=14\)
\(\left(a+b\right)^2=4^2\Leftrightarrow a^2+2ab+b^2=16\Leftrightarrow a^2+b^2=4-2ab=16-2.1=14\)
Vậy, \(M=14\)
Bài 1:Cho a+b=5 và a.b=-6 Tính:
a) a.(4a+b)+4b
b) a2+b2
c) a4+b4
Bài 2: 2a-b=5 và a.b=3
a) a.(b-2)+b
b) 4.a2+b2
cho a+b=3 a.b=1 tính giá trị biểu thức A=a2+b2
Cho: a + b = 9, a.b = 20
Tính: a, A = a2 + b2
b, B = a4 + b4
c, C = a2 - b2
Rút gọn: M= (a2+b2+2)3-(a2+b2-2)3-12(a2+b2)2
Cho a + b =1. Hãy tính giá trị của biểu thức N= a3+b3+3ab
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
Cho a>b>0 và a-b=7 và ab=60. Không tính a,b hãy tính a2-b2 và a4+b4
Cho abc ≠ 0; a + b = c. Tính giá trị của biểu thức B = (a 2 + b 2 − c 2 )(b 2 + c 2 − a 2 )(c 2 + a 2 − b 2 ) 8a 2 b 2 c 2
A. -1
B. 1
C. 2
D. -2
Cho a+b=1.Tính giá trị của biểu thức sau:
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
cho a+b=1. Tính giá trị của biểu thức sau:
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a 3 + b 3 + 3 a b ( a 2 + b 2 ) + 6 a 2 b 2 ( a + b ) .