Đây:
\(\frac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}=2.2.a=4a\)
Suy ra \(\frac{a^2}{b-1}\ge4a-4b+4\)
Tương tự với hai BĐT còn lại và cộng theo vế ta có đpcm.
Đây:
\(\frac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}=2.2.a=4a\)
Suy ra \(\frac{a^2}{b-1}\ge4a-4b+4\)
Tương tự với hai BĐT còn lại và cộng theo vế ta có đpcm.
Cho a,b,c là các số dương ko âm thỏa mãn: a2 + b2 + c2 = 3
CMR \(\frac{a}{a^2+2b+3}\)+ \(\frac{b}{b^2+2c+3}\)+ \(\frac{c}{c^2+2a+3}\)\(\le\)\(\frac{1}{2}\)
help me
#mã mã#
Cho a,b,c là các số thực dương thỏa mãn: a+b+c=1.
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\(\ge\frac{1}{2}\).
Help me!!!!
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)
Cho a,b,c là các số lớn hơn 1 .Cm \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a, b, c là các số dương.
CMR:\(\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}+\frac{a^2}{c\left(c^2+a^2\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c là các số dương. Chứng minh rằng: \(\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}+\frac{a^2}{a\left(c^2+a^2\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
CHo các số dương a,b,c dương thỏa mã a+b+c=1.tìm gtln của \(A=\frac{\sqrt{3a}+2\sqrt{bc}}{1+\sqrt{bc}+3\sqrt{a+bc}}+\frac{\sqrt{3b}+2\sqrt{ca}}{1+\sqrt{ca}+3\sqrt{b+ca}}+\frac{\sqrt{3c}+2\sqrt{ab}}{1+\sqrt{ab}+3\sqrt{c+ab}}\)
CHO a;b;c là các số lớn hơn 1.chứng minh \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)