\(a^2+b^2=20\Leftrightarrow\left(a+b\right)^2-2ab=20\Leftrightarrow2^2-2ab=20\Rightarrow ab=-8\)
\(M=a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)=2^3-3.\left(-8\right).2=56\)
\(a^2+b^2=20\Leftrightarrow\left(a+b\right)^2-2ab=20\Leftrightarrow2^2-2ab=20\Rightarrow ab=-8\)
\(M=a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)=2^3-3.\left(-8\right).2=56\)
Rút gọn: M= (a2+b2+2)3-(a2+b2-2)3-12(a2+b2)2
Cho a + b =1. Hãy tính giá trị của biểu thức N= a3+b3+3ab
cho a+b=1. Tính giá trị của biểu thức sau:
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
Cho a+b=1.Tính giá trị của biểu thức sau:
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a 3 + b 3 + 3 a b ( a 2 + b 2 ) + 6 a 2 b 2 ( a + b ) .
Tính giá trị biểu thức:
a) M = (7 – m)( m 2 + 7m + 49) – (64 – m 3 ) tại m = 2017;
b*) N = 8 a 3 – 27 b 3 biết ab = 12 và 2a – 3b = 5;
c) K = a 3 + b 3 + 6 a 2 b 2 (a + b) + 3ab( a 2 + b 2 ) biết a + b = 1.
Cho a 3 + b 3 + c 3 = 3 a b c và a + b + c ≠ 0.Tính giá trị của biểu thức A = a 2 + b 2 + c 2 ( a + b + c ) 2
Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
cho a,b là 2 số thực phân biệt thỏa mãn a2-3a=b2-3b=1. Tính giá trị của:
a+b ; a2+b2 ; a3+b3 ; a4+b4 ; a5+b5 ; a6+b6
giải giúp mik vs!
a) 5x(x-3)-x+3=0
b) x2+3x-2x-6=0
d) 3x2+2x-5
bài 2:
cho a+b+c=0
tính giá trị biểu thức:
A=a3+b3+c(a2+b2)-abc
bài 3
cho a+b=7 và ab=12
tính: a) (a-b)2
b) a3+ b3